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Abstract

　
How do humans behave in a situation where (i) one needs to make one’s own be-

havior unpredictable and (ii) one needs to predict an opponent’s behavior? This is

an important class of strategic situations, formulated as games with a mixed strategy

equilibrium. If humans are put in such a situation, it is obvious that, rather than

calculating the mixed equilibrium strategy, they use their hunches and some heuristics

to achieve the aforementioned goals (i) and (ii). Exactly what kind of mechanisms

are employed has not been fully understood. To address this issue, we use our unique

big experimental data set about a game with a mixed strategy equilibrium, which

has about 75,000 observations, and compare conventional behavioral economics mod-

els with some leading machine learning models. The use of big data enables us to

examine the external validities of those models, i.e., compare the predictive powers of

those models in data sets that are not used for parameter estimation. We found that

machine learning models, most notably a version of the deep learning model LSTM,

substantially outperform the leading behavioral model (EWA), and this happens only

when the size of the data set for parameter estimation is sufficiently large. Finally, we

try to improve the EWA model by incorporating the insights gained from the machine

learning models.
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1 Introduction

The central research question of this article concerns how humans behave in a situation

where (i) one needs to make one’s own action unpredictable and (ii) at the same time one

needs to predict which action an opponent will take. Examples abound and include tax

auditing, terrorist attacks vs. airport security guards (Tambe, 2011), tennis serves (Walker

and Wooders, 2001), and penalty kicks in soccer games (Palacios-Huerta, 2003; Chiappori,

Levitt and Groseclose, 2002).

Such a situation can be formalized as a game with a mixed strategy equilibrium. A mixed

strategy equilibrium is an ideal state where players’ random actions constitute the mutual

best reply. Previous research (e.g., the aforementioned papers as well as O’Neill, 1987;

Camerer, 2011) has revealed that the concept of a mixed strategy equilibrium describes

human behavior in field and lab data to some reasonable extent, while it has also been

shown that humans do not exactly follow a mixed strategy equilibrium (e.g., Brown and

Rosenthal, 1990). The latter point makes good sense; we would like the reader to reflect for

a moment on how one might choose the directions of tennis serves or actions in the Rock-

Paper-Scissors game. It is rather clear that one uses intuition, hunches, and some kind of

limited reasoning to make one’s action unpredictable and at the same time to predict the

opponent’s action. Exactly what kind of cognitive processes are employed has not yet been

fully uncovered. The purpose of our research is to address this issue using machine learning

models and big data.

We use a unique data set that one of the authors has collected about a two-player game

that has a non-trivial mixed strategy equilibrium. It is a card game invented by O’Neill

(1987), where each player, the “red” and the “black” player, has four cards, K, 1, 2, and 3,

and chooses one of those cards at the same time as the opponent. The winner is determined

by a rather complicated set of rules, and as a result, unlike the Rock-Paper-Scissors game,

the equilibrium probability distribution over the four cards is not uniform, and the black

player has a higher equilibrium win rate. The data set was collected in a Coursera online

course on game theory, and it covers more than 5,000 participants. Each pair played the

game 30 times, which provides roughly 75,000 observations (for each player’s role). To the

best of our knowledge, this is one of the largest data sets for a single treatment in economic

laboratory experiments.

To uncover how players behave in a game with a mixed strategy equilibrium, we employ

some of the leading machine learning models as well as the conventional behavioral economics

models. Machine learning refers to a class of models in artificial intelligence that are used to

detect various empirical regularities in big data. It received much public attention when a

deep learning model gave a sensational performance in a leading image recognition contest,

the ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015). The
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Figure 1. The graph is created based on data on Russakovsky et al. (2015) and ImageNet

https://www.image-net.org/. Note that for 2012 and 2013, we selected the minimum

classification error rates by a team not using outside training data. Also, note that the

human error rate is based on test data from 2012 to 2014.

task was to recognize the object (such as a tiger) in an image (such as a picture of a tiger).

Figure 1 provides the error rates of the winners of the competition over time. Previously,

the best error rate was somewhere above 20%, with gradual improvements made each year,

but the introduction of a deep learning model in 2012 resulted in a sudden drop of around

10 percentage points. In the contest, the contestants “trained” their models (i.e., performed

parameter fitting) on a large data set of about 1.2 million images, and the actual competitive

image recognition was performed on a separate “test” data set.

Figure 2. The motivation of our research. The image of the tiger is adapted from https://

commons.wikimedia.org/wiki/File:2012_Suedchinesischer_Tiger.JPG (J. Patrick Fis-

cher, 2011).
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Figure 2 illustrates the motivation of our research: If machine learning is capable of recog-

nizing some patterns in an image, such as the overall shape of the object and its local pattern

of black stripes, to conclude that the object in the image is a tiger, it might also recognize

patterns in the past history of play in the card game to predict how players choose their

current actions. We have a unique big data set that enables us to explore that possibility.

Figure 3. Prediction error rates (Kullback-Leibler divergence) of alternative models (of the

red player) and the sample size.

Figure 3 summarizes our main findings. The figure shows the predictive powers of alterna-

tive models of the subjects’ behavior. We conducted parameter estimation/fitting in 80% of

the data (the “training” data) and utilized the remaining 20% of data for the performance

comparison of the models (the “test” data) in terms of the prediction error rates. Figure 3

shows the results with the full sample size of our unique big data (below) as well as with an

artificially reduced size (above) that is comparable to those in conventional in-person lab-

oratory experimental studies. The full sample results show that the best machine learning

model we analyzed, a version of deep learning called LSTM, substantially improved upon the

conventional behavioral model (Experience-Weighted Attraction model: EWA). The leading

behavioral model (EWA) achieves only 30.9% of the error rate reduction of the best machine

learning model relative to a naive benchmark in the form of an i.i.d. mixture model. In

contrast, if we only had a smaller sample size comparable to those in conventional in-person

laboratory experiments (the upper-right part in Figure 3), the differences in the error rates

of alternative models would be much smaller and the notable dominance of the machine

learning model would not manifest itself.

We must stress that what Figure 3 shows is not the goodness of fit of various models to the

data set that is used for parameter estimation. Given that the machine learning model has

a much larger number of parameters than the behavioral model, it would not be surprising

that the former fits the data better than the latter. Instead, what Figure 3 shows is the
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“external validity,” i.e., the predictive power of the models in a data set that is not used for

parameter estimation. The superiority of the machine learning model shows that it captures

the regularities that are common in the training and test data, i.e., the regularities of human

subjects’ behavior. In summary, thanks to our unique big data set, we were able to detect,

by means of a machine learning model, that there are certain regularities in the subjects’

behavior that have not been captured by the existing models.

Figure 4. Strategic error rates: how the loss rate of the black player is reduced by utilizing

the estimated/fitted models of the opponent.

An important implication is that, even though the subjects try to be unpredictable, their

behavior patterns are detectable to some extent by a machine learning model. Figure 4 shows

the extent to which the models capture the predictable patterns of the subjects’ behavior.

The figure shows, for each model, a novel measure of prediction errors we introduce, strategic

error rate, which measures the average loss rate of a player if she/he utilized the estimated

model of the opponent to make the best reply in any given single period. Note that, if a

model predicts the action of the focal player for sure, the opponent can surely win and the

strategic error rate of the model is zero. While the actual loss rate of the black player is

41.9%, which is close to the equilibrium loss rate, the black player can reduce the loss rate

by more than 10 percentage points, down to 30.9% by utilizing the best machine learning

model (LSTM) of the opponent.

We also tried to obtain insights into the nature of players’ behavior from several machine

learning models we employed. This is because machine learning models are often “black

boxes” in that the meaning of the fitted parameters is not immediately clear. The best ma-

chine learning models in our study successfully replicate how players choose mixed strategies,

but what mechanisms they capture remains a crucial open research question. This is in line
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with the recent trend in artificial intelligence research to open the black box and to gain

insights or to provide accountability about what is being done inside the machine, something

that is called XAI (explainable artificial intelligence) (c.f. Adadi and Berrada, 2018, for the

survey). By examining the machine learning models, we incorporated additional mechanisms

into the conventional behavioral model (EWA), and the modified model captures 85.3% and

71.4% of the error rate reduction for the red and black player, respectively, as opposed to

the 30.9% captured by EWA.　
Finally, our paper suggests the following research program, which can be phrased as Cap-

ture and Decode and proceeds in three steps.

1. Collect Big Data: Collect a data set that is large enough to clearly distinguish the

relative performance of models. Our analysis suggests that a number of observations in

the order of tens of thousands would be a reasonable target.

2. Capture: Use machine learning models to see if there are systematic regularities in the

data that have previously not been discovered. The regularities are “captured” by a

machine learning model, and they are encoded in the fitted parameters of the model.

The term “encoded” reflects the fact that the meaning of the parameters of machine

learning models is often not immediately clear.

3. Decode: “Open” the black box of the machine learning model to identify and understand

how the regularities are generated. This is in line with the XAI research mentioned

above. The model and fitted parameters that captured the regularities are to be disclosed

in the public domain so that researchers can collaborate on this task.

A previous contribution, Peysakhovich and Naecker (2017), also suggests and follows the

steps 2 and 3 in the above procedure for experimental data on decision-making under ambi-

guity, although they use substantially fewer observations (about 3,000 observations in each

treatment) than us.

We have success in the capture stage, but work remains to be done on the decoding stage.

How to fully uncover the nature of the regularities captured by our machine learning models

remains a challenging open question.

1.1 Related Literature

There is a large body of literature on laboratory experiments of games with a unique mixed

strategy equilibrium (c.f. Chapter 3 in Camerer, 2011). O’Neill (1987) is one of the most

influential works in the literature. He proposed a new experimental design, which we explain

in Section 2, to overcome some difficulties of testing the minimax strategy in the previous

literature. His finding is that although deviations from the minimax strategy are observed

on an individual level, the overall distributions of play and winning rates are very close to

the predicted ones from the minimax strategy. In contrast, Brown and Rosenthal (1990)
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reexamined O’Neill’s result and showed that there is less evidence of a minimax strategy

than O’Neill (1987) indicates. In particular, they pointed out that people’s behavior depends

on their own and opponents’ behavior, implying that people do not follow an independently

mixed Nash strategy. Many studies appearing after these papers (e.g., Rapoport and Boebel,

1992) have tested a mixed strategy under different situations (for example, with a focus on

learning in Mookherjee and Sopher, 1997). One of the authors of this paper examines the

replicability of O’Neill’s results in Kandori (2018). Overall, the literature indicates a modest

deviation from a mixed strategy equilibrium.

Our paper is also related to the literature on learning in games that asks how an equilibrium

arises in a game. Leading models include reinforcement learning (e.g., Roth and Erev, 1995;

Erev and Roth, 1998) and belief learning such as fictitious play (Brown, 1949). Camerer

and Ho (1999) propose an influential generalized model incorporating both reinforcement

learning and belief learning, called the experience-weighted attraction (EWA) model. We

use the EWA model as a benchmark of economic theories, and thus we explain it in detail

in Section 4.3.

Finally, our paper is positioned in the literature on machine learning and economics. In

recent years, an increasing number of economics studies have been conducted using machine

learning approaches (c.f. Athey and Imbens, 2019; Mullainathan and Spiess, 2017). Behav-

ioral economics and experimental economics are no exception. As Camerer (2019) discusses,

behavioral economics and artificial intelligence may interact in future research, and these

fields are trying to incorporate the machine learning approach into their analysis. In the

literature, our paper is most closely related to Peysakhovich and Naecker (2017) and Fuden-

berg et al. (2021). Peysakhovich and Naecker (2017) show that machine learning tools can

improve out-of-sample predictive power over economic models in the domain of ambiguity.

Fudenberg et al. (2021) show that machine learning models outperform the out-of-sample

predictive power of economic models such as the Level-K model in the initial play of matrix

games. What both papers and ours have in common is that they try to improve the eco-

nomic theory, focusing on the out-of-sample prediction performance and using a measure to

quantify the performance. Peysakhovich and Naecker (2017) use regularized regression (in-

cluding LASSO, explained in Section 5.3), as a benchmark, and compare the out-of-sample

mean squared error from regularized regression with that from economic models. Through

the comparison, they consider how much out-of-sample variance is explainable. Fudenberg

et al. (2021) defined the notion of completeness to evaluate how much out-of-sample predic-

tion errors are explained by economic theories. Completeness is defined as the fraction of

out-of-sample reducible prediction errors that the model could reduce, where the reducible

prediction errors are the difference between prediction errors from the best model minus those

from a naive benchmark. We use a version of that concept in the performance comparison

of our models.
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2 O’Neill’s Game

In this paper, we consider O’Neill’s game, introduced by O’Neill (1987). Our game is a

normal form game with two players, a red (R) player and a black (B) player. Each player

i ∈ I ≡ {R, B} chooses one of four cards, ai ∈ C ≡ {1, 2, 3, K} (Ace, Two, Three, and

King), as their action. The payoff matrix is shown in Table 1. In words, the red player wins

if and only if

1. both players choose K, or

2. both players choose numbers (1, 2, or 3), and those two numbers are different,

and the black player wins if and only if

1. exactly one player chooses K, or

2. both players choose the same number.

The black player

The

red

player

1 2 3 K

1 0, 1 1, 0 1, 0 0, 1

2 1, 0 0, 1 1, 0 0, 1

3 1, 0 1, 0 0, 1 0, 1

K 0, 1 0, 1 0, 1 1, 0

Table 1. The payoff matrix of the stage game.

This game was designed to be the simplest possible one with a non-trivial mixed strategy

equilibrium. More precisely, O’Neill (1987) shows that the game is the unique normal form

game that satisfies the following conditions.

1. There are binary payoffs for each player.

2. Neither player has two identical strategies.

3. Neither player has a dominant strategy.

4. The game is not completely symmetrical in strategies.

5. Any other game satisfying the conditions above has at least as many strategies for each

player.

This is the game played by our subjects, and the labeling of pure strategies described above

is slightly different from the one originally used in O’Neill’s experiment*1. The game has a

*1 In O’Neill’s experiment, the card that played the role of K in the above description of the game was
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unique mixed strategy Nash equilibrium: both players play K with a probability of 0.4 and

play 1, 2, and 3 with a probability of 0.2, respectively. In the equilibrium, the red player

wins with a probability of 0.4, and the black player wins with a probability of 0.6. Hence,

unlike the Rock-Paper-Scissors game, the mixed strategy is not trivial. The complexity or

non-triviality of the mixed strategy allows us to test and understand how people choose a

mixed strategy.

3 Data

3.1 Data Collection

We collected our data in a Coursera online course offered by one of the authors (M. Kan-

dori), “Welcome to Game Theory”*2. The course started in February 2015 and is still avail-

able. In the first week, students are asked to play this game with someone else for 30 periods

and submit the results on the course web page before taking lectures on Nash equilibrium

and mixed strategy equilibrium. The rules of the game are explained in one of the lectures,

and the students are told, “This is a perfect example of a strategic situation because what

is best for you depends on what the other player is going to do, and each player is trying to

do his or her best against the opponent. By experiencing this game, you can personally see

the nature of strategic thinking.” The written instructions say the following: “We encourage

everyone to give it a shot, . . . Please note that no grade will be given to this activity. Your

participation in this activity should be on a completely voluntary basis, and your answers

will have no bearing on your course grades.”

Hence, our data set is different from the usual lab data in the following respects. First,

the experiments were unsupervised. We asked the students to find a partner, play the game,

record the results, and report back. Second, we do not know the identities of the students’

partners, who we expect to be their friends or family members. Third, no financial rewards

were given to the subjects. We expect that these features do not pose a serious problem

for the following reasons. First, we asked the students to play this game with a deck of

cards, and we are naturally motivated to win when we play a card game, even if no monetary

payment is made. Second, we made it clear that participation is completely voluntary and

has nothing to do with the course grade, and participation is costly in terms of time and

effort. This fact is likely to discourage attempts to submit fake data, as the cost of doing this

exceeds the benefit. A person who submits fake data incurs the time and effort of reading and

understanding the instructions, cooking up data for 30 rounds, and uploading the file, even

though no reward is given. Our view is that only those who are curious about experiencing a

strategic situation are likely to have participated in the experiments and that they will have

Joker.
*2 https://www.coursera.org/learn/game-theory-introduction
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done this for the fun of playing the game.

Our data set here contains 2781 pairs (5562 participants) of play in total, submitted from

February 2015 to April 2021. It contains 192 pairs of data in which a player’s action was

missing in at least one period. We eliminated these pairs and used the remaining 2589 pairs

(5178 participants) of data.

3.2 The uniqueness of Our “Big” Data

The uniqueness of our data set lies in the number of participants, and especially the

number of observations. As indicated in Section 3.1, we collected data from 2589 pairs (5178

participants). Each pair played the stage game for 30 rounds. Hence, the total numbers of

observations for the red player and the black player are 77670 = 2589 × 30, respectively*3.

To the best of our knowledge, the number of observations in our data set is one of the largest

for a single treatment.

Figure 5. The total number of participants and the maximum number of observations in a

single treatment in each paper published in 2020 and 2021. The red point corresponds to

our paper. The gray points represent laboratory experiments, and the blue ones correspond

to papers employing “artefactual field experiments,” defined by Harrison and List (2004),

which include experiments conducted by Amazon Mechanical Turk (MTurk).

*3 In Section 3.3, we eliminate 12 pairs of data. Therefore, the number of observations for each player’s

role becomes 77310 = 2577× 30.
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To substantiate our claim about how big our data set is, we have checked how many

participants and observations recent experimental papers obtained. Nunnari, Congiu and

Emiliano (2022) create a list of all experimental papers with a lab component published

in Top 5 journals*4 between 2010 and 2021. Checking the papers in the list published in

2020 and 2021, we found that the number of observations in our data is more than those

in all those papers except for Augenblick and Rabin (2021), which analyzes artefactual field

data*5. The results are shown in Figure 5, which plots the total number of observations and

the maximum number of observations in a single treatment in each paper. Although there

is another paper in Figure 5 (Rees-Jones and Taubinsky, 2020) whose maximum number of

observations is close to ours, it is clear that the number of observations in our paper is one

of the largest.

3.3 Data Cleaning

Since our data were collected by the participants themselves in an uncontrolled environ-

ment, there are concerns about data credibility in some cases, in the sense of whether the

submitted data are based on actual play. For example, if the black player in a pair plays

aB = 2 for 30 periods and the red player plays aR = 1 for 30 periods, this results in a com-

plete win for the black player. We exclude a fairly small number of such “outliers” through

the following procedure. First, we list the pairs

• whose win rate for the red or the black player is in the top 1%, or

• in which either player repeats the same card more than 15 times.

We obtained 53 pairs through this process. We then manually checked them and finally

eliminated 12 pairs of obviously suspicious data. In the end, we conducted our analysis using

the remaining 2577 pairs (5154 participants) of data.

3.4 Descriptive Statistics

In this section, we briefly describe some features of our data based on summary statistics.

Hereafter, we use the cleaned data for all analyses: 2577 pairs × 30 periods.

First, we observe that the choice probabilities of the actual subjects are very close to the

*4 American Economic Reviews, Econometrics, Quarterly Journal of Economics, Journal of Political

Economy, and Review of Economic Studies.
*5 They collected three data sets, whose number of observations are 593,218, 926,083, and 7,422,530.

The first data set consists of probability assessments from thousands of forecasters solicited via email.

The second one is not about human subjects and consists of probability assessments from an algorithm

that makes dynamic probabilistic predictions about baseball games. The third one consists of the

“market average probability assessments” backed up by the high-frequency market data of Betfair,

a prediction market in the UK. Thus, the paper concerns more of a field experiment than a lab

experiment. This is indicated by the fact that Nunnari, Congiu and Emiliano (2022) classify the

paper as a paper employing artefactual field experiments, as defined by Harrison and List (2004).
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(a) Distribution of the action profiles of the subjects in our data

Red \ Black 1 2 3 K
Marginal

Distribution

1
.059 .051 .048 .081 .238
(.040) (.040) (.040) (.080) (.200)

2
.051 .047 .043 .073 .214
(.040) (.040) (.040) (.080) (.200)

3
.045 .041 .044 .070 .199
(.040) (.040) (.040) (.080) (.200)

K
.080 .064 .064 .140 .348
(.080) (.080) (.080) (.016) (.400)

Marginal .235 .202 .198 .364
Distribution (.200) (.200) (.200) (.400)

(b) Distribution of action profiles of the subjects in O’Neill (1987)

Red \ Black 1 2 3 K
Marginal

Distribution

1
.044 .043 .043 .091 .221
(.040) (.040) (.040) (.080) (.200)

2
.046 .038 .038 .092 .215
(.040) (.040) (.040) (.080) (.200)

3
.049 .032 .037 .085 .203
(.040) (.040) (.040) (.080) (.200)

K
.086 .065 .051 .158 .362
(.080) (.080) (.080) (.016) (.400)

Marginal .226 .179 .169 .426
Distribution (.200) (.200) (.200) (.400)

Table 2. Distribution of the action profiles played by all the subjects (a) in our data and

(b) in O’Neill’s data (the statistics are summarized in Brown and Rosenthal (1990)). The

numbers in parentheses are the distribution of action profiles in the Nash equilibrium. O’Neill

collected 2625 observations of strategy profiles (25 pairs times 105 periods).

Nash equilibrium in the aggregate level. Table 2a shows the empirical distribution of action

profiles. The numbers in parentheses represent the theoretical distribution of profiles under

the Nash equilibrium. One can see that the actual distribution and the NE distribution are

very close, except that there is an “Ace bias” for both players. The original result in O’Neill

(1987) exhibits similar patterns as shown in Table 2b, and our data largely replicate what

O’Neill found.

Table 3 is the win rate distribution for both players. Here, the average win rate (0.419 for

red players, 0.581 for black players) is also very close to that in the Nash equilibrium (0.4

for red players, 0.6 for black players).

Figure 6 represents the distribution of the pairwise K ratio of each pair over 30 periods.

We see that the points are gathered around the mixed NE or the average point.

However, the time series of the choices of the subjects cast doubt on the hypothesis that
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count mean std min 5% 25% 50% 75% 95% max

Red 2577 0.419 0.091 0.100 0.267 0.367 0.433 0.467 0.567 0.767

Black 2577 0.581 0.091 0.233 0.433 0.533 0.567 0.633 0.733 0.900

Table 3. Summary statistics of win rates among all pairs in our data.

Figure 6. Pairwise distribution of the K ratio. We plot the ratio of K that the red and the

black player in each pair play in 30 periods. The size of the markers represents the number

of pairs at that point (a larger marker implies more pairs). The red marker indicates the NE

(0.4, 0.4) and the yellow marker represents the average of all subjects, (0.348, 0.364).

the subjects play the mixed Nash equilibrium independently every period. The two graphs

in the upper half of Figure 7 illustrate the trajectories of the average choice frequencies of

all the red and black players in each period. The two graphs in the lower half show the same

trajectories in the simulations where the same number of agents play the NE independently.

We observe larger variations in the actual data than in the i.i.d. simulations.

Table 4 shows how the card frequencies depend on the previous action of the focal player.

The rows in this table should be similar if the subjects played the i.i.d. mixed strategy, but

they are rather different. This shows that the choice of the current action depends at least

on the previous action, a violation of i.i.d. choice. In fact, Brown and Rosenthal (1990)

rigorously showed that the null hypothesis that the subjects in O’Neill’s data played the

i.i.d. mixture is statistically rejected. What mechanisms guide the subjects’ behavior? This

is the question we address in this paper.
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Figure 7. The transition of the average choice probabilities among all 2577 pairs. The upper

two figures show the period transition of the actual choice probabilities (left: red players,

right: black players). The lower two figures show the transition of the simulated choice

probabilities when 2577 agents play the mixed NE independently (left: red players, right:

black players).

4 Econometric Models

We adopt two types of models to emulate actual human behavior: traditional economic

models and machine learning models. The economic models include major behavioral models

such as reinforcement learning (RL), belief learning (BL, also known as fictitious play), and

the EWA model. The machine learning models are the decision tree, LASSO, and deep

learning models. In this section, we explain the economic models that we adopted. We

also discuss the estimated parameters using all the sample data. The final performance

comparison with the test data will be discussed in Section 7.

Before discussing the models, we first introduce some notation. In every period t ∈ T ≡
{1, 2, . . . , 30}, each player i ∈ I = {R,B} simultaneously chooses one of the four cards,
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(a) The red player

Current action

1 2 3 K

L
as
t
ac
ti
on

1 0.183 0.242 0.217 0.358

2 0.264 0.160 0.220 0.356

3 0.262 0.230 0.148 0.360

K 0.247 0.221 0.204 0.327

Average 0.238 0.214 0.199 0.348

(b) The black player

Current action

1 2 3 K

L
as
t
a
ct
io
n 1 0.178 0.223 0.217 0.382

2 0.253 0.153 0.223 0.371

3 0.260 0.224 0.149 0.367

K 0.246 0.204 0.204 0.346

Average 0.235 0.202 0.198 0.364

Table 4. Transition matrix of (a) the red player’s actions and (b) the black player’s actions.

Each line indicates the empirical probability distribution over current action (ati = 1, 2, 3,K)

given a certain previous actions (at−1
i ).

ati ∈ C ≡ {1, 2, 3, K}. We write the set of action profiles in each stage game as A ≡ C2. We

denote the set of histories of action profiles before period t by Ht ≡ At−1 and its elements by

ht ≡ ((a1R, a
1
B), (a

2
R, a

2
B), . . . , (a

t−1
R , at−1

B )). For notational convenience, we define the initial

dummy history h0 ≡ ∅ and let H1 ≡ {∅}.
Each pair in our data is indexed by s = 1, 2, . . . , S. For the estimation of the parameters

of the economic models we report in this section, we use all the data we have (S = 2577). In

the performance comparison discussed later in this paper, on the other hand, we randomly

split our data into “training data” and “test data,” and estimate model parameters using

the training data only. This procedure will be explained in detail in Section 5.1.

4.1 Multinomial logit

We first introduce a logistic regression model. Using the dummy variables of the history of

action profiles, the probability that a subject in the role of player i ∈ I chooses action a ∈ C

at period t is given by

P (ati = a | ht) =
exp
{
βT
i,axi(h

t)
}

∑
c∈C exp

{
βT
i,cxi(ht)

} (1)

where xi(h
t) ∈ {0, 1}m is an m-dimensional vector of dummy variables (including the con-

stant term) that depends on the history ht ∈ Ht, where m is the number of dummy variables

used in the model. For example, if a model includes the dummies of the history of action

profiles in the last two periods, the choice probability is given by

P (ati = a | ht) ∝ exp

{∑
c∈A2

βc
a · 1

{
((at−1

R , at−1
B ), (at−2

R , at−2
B )) = c

}}
.
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We start by estimating the following three classes of simple “baseline” models (for the

red and the black player). The number m in parentheses indicates the dimension of dummy

variables used in a model.

1. Constant only (m = 1)

2. History of action profiles in the previous one and two periods (m = 16 and 256)

3. History of “king or number” profiles in the previous one, two, three, and four periods

(m = 4, 16, 64, 256, and 1028)

Here a “king or number” profile (we call it a K-profile henceforth) is a summarized action

profile in a round that takes one of four values (king, king), (king, number), (number, king),

(number, number).

The above models have at most m = 1028 variables, and estimating similar mod-

els with longer histories of m > 1028 variables is infeasible for the following reason.

There is, for example, no three-period history of action profiles in the data that takes

((at−1
R , at−1

B ), (at−2
R , at−2

B ), (at−3
R , at−3

B )) = ((1, 2), (2, 2), (2, 2)). The three-period sample

histories lack seven data points out of 4096 patterns, the four-period sample histories lack

30473 data points out of 65536 patterns, and the six-period histories of K-profiles lack 88

data points out of 4096 patterns.

We estimate the coefficients using conditional maximum likelihood estimation. Note that

when a model includes dummies of t-period histories, a maximum of 30 − t periods of each

pair’s data can be used for estimation. The log-likelihood function is given by

LLi(βi) =
∑

s=1,...,S

∑
t=t,...,30

∑
a∈C

βT
i,axi(h

t
s)− ln

(∑
c∈C

exp
{
βT
i,cxi(h

t
s)
})

for each player i = R,B, where βi ≡ (βi,c)c∈C are the coefficient vectors of the model.

In specifications 1, 2, and 3, by construction, only one element in a dummy variable vector

xi(h
t) takes the value 1 at any given time. Let H(k) be the subset of histories for which the

k-th element of a dummy variable vector x
(k)
i (h) takes the value 1. The maximum likelihood

estimator of the coefficients of the dummy variable β
(k)
i =

(
β
(k)
i,1 , β

(k)
i,2 , β

(k)
i,3 , β

(k)
i,K

)
is known

to have the property that the estimated choice probability after the histories H(k) matches

the empirical frequencies of the actions after H(k) *6. That is, for any h ∈ H(k),

*6 To see why, first denote the left-hand side of equation (2) by p(k)(a) for a = 1, 2, 3,K. The likelihood

function for the model (1) is equal to

∏
k

(∏
a

p(k)(a)n
(k)(a)

)

where n(k)(a) is the number of occurrences of action a in the data after histories in H(k). Therefore,

the log-likelihood function is equal to

∑
k

N(k)

(∑
a

n(k)(a)

N(k)
log p(a)

)
,
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P (ai = a | h) =
eβ

(k)
i,a

eβ
(k)
i,1 + eβ

(k)
i,2 + eβ

(k)
i,3 + eβ

(k)
i,K

(2)

= (The empirical frequency of card a after histories in H(k)).

Note that the four coefficients in (2) are not identified, because if we replace β
(k)
i,a with

β
(k)
i,a + b for some constant b, the right-hand side of (2) remains unchanged. Because of this,

when we estimate the coefficients, we normalize the coefficients of card K to 0. The validity

of that procedure can be seen more directly in equation (4) in the next subsection.

4.2 The Challenge of Model Selection and Non-Parametric Estimation Using Our

Big Data Set

Our goal is to find the model that best describes the subjects’ behavior. Note that any

model that provides a full-support probability prediction of the current action of a player

given the history of play can be written as equation (1) for the following reason. Since

probabilities of actions (cards) add up to 1, the ratios of probabilities (odds), such as P (ati =

a | ht)/P (ati = K | ht), a = 1, 2, 3, uniquely determine the probabilities of actions. Hence,

any full-support model can be written as

P (ati = a | ht)

P (ati = K | ht)
= ga(h

t), (3)

while equation (1) boils down to

P (ati = a | ht)

P (ati = K | ht)
= exp

{
(βi,a − βi,K)Txi(h

t)
}
. (4)

If we let xi(h
t) be the vector of indicator functions for histories (· · · ,1ĥt , · · · ), where ĥt runs

over all possible histories, and denote the element of vector βi,a that corresponds to the coef-

ficient of 1ĥt by βi,a,ĥt , then the left-hand side of (4) is simply equal to exp
{
βi,a,ht −βi,K,ht

}
.

Therefore, by setting βi,a,ht − βi,K,ht = log ga(h
t), any full-support model is represented by

where N(k) is the number of occurrences of histories in H(k) in the data. Choosing β
(k)
i to maximize

the log-likelihood is equivalent to

max
p(k)

∑
a

n(k)(a)

N(k)
log p(k)(a) s.t.

∑
a

p(k)(a) = 1

for each k because there always exists β
(k)
i that satisfies (2) for any p(k). The Lagrangian is L =∑

a
n(k)(a)

N(k) log p(k)(a)− λ(k)
(∑

a p(k)(a)− 1
)
, and the first-order condition is

∂L
∂p(a)

= 0 =⇒
n(k)(a)

N(k)
/p(k)(a) = λ(k).

The constraint is satisfied with λ(k) = 1, and therefore p(k)(a) = n(k)(a)/N(k), the empirical fre-

quency of card a after the histories in H(k).
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(1). Equation 4 also shows that (βi,a − βi,K) is identified but βi,a and βi,K are not. As we

explained, in the baseline models, we employed normalization βi,K = 0.

Given that (1) encompasses all models, our quest for the best one boils down to (i) the

selection of variables xi(h
t) and (ii) possible parametrization of the coefficient vector βi,a by

a smaller number of parameters, all within the ambient model (1).

If we have enough data in the sense that we have enough data points for each history

ht, we can perform non-parametric estimation, by using indicator functions of all histories

xi = (· · · ,1ĥt , · · · ). This is infeasible because the number of complete histories is astro-

nomical. Non-parametric estimation is feasible, however, if we postulate that subjects have

limited memory. For example, if we postulate that current action only depends on the history

of outcomes (action profiles) in the past two periods, the number of two-period histories is

(4× 4)2 = 256, and our data set with 74733 observations provides at least 66 observations of

actions after each two-period history, which is large enough for a reliable non-parametric es-

timation of action distribution after each history. The following figure shows the distribution

of the number of observations (occurrences) of two-period histories.

Figure 8. The number of occurrences of each two-period history ((atR, a
t
B), (a

t−1
R , at−1

B )) out

of 74733 two-period histories in the data. The average count is 291.9. The most frequently

observed history is ((K,K), (K,K)), which occurs 1437 times in the data. The history of

least frequent observation is ((3, 3), (3, 3)), which still appears 66 times in the data.

Therefore, one of the models in the previous subsection, the logit model with two-period

history dummies, would provide a reliable non-parametric estimation of the subjects’ behav-

ior provided that they have two-period memories.

Non-parametric models may not be the best choice for the following well-known reasons. If,

for example, if the true data generation process is given by equation (1) with a small number

of variables on the right-hand side, such as xi = (1H0 ,1H1) for some subsets of histories H0
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and H1, estimating this specification of the model is better (provides a smaller prediction

error) than estimating a non-parametric model. How should we decide which variables to

include in the model (1)? This is a classical statistical problem of model selection, and

the statistics theory recommends that we use information criteria such as AIC and BIC.

According to those methods, we must estimate each possible specification of the model and

calculate a number called the AIC or BIC value, and then select the model with the minimum

such value. This guarantees the optimal selection of the model in the appropriate sense as

the number of data points goes to infinity.

The challenge of model selection we face is that the statistically optimal procedure is

computationally infeasible. Even when we confine our attention to the selection of dummy

variables of subsets of two-period history of play, the number of non-empty subsets is equal

to 2256− 1 and the number of feasible combinations of those dummy variables is even larger.

It is clearly impossible to compute and compare such a large number of AIC or BIC val-

ues. The machine learning models we introduce in Section 5 can be viewed as a practical

way of selecting a good model (or as having been shown to select good models in real-life

applications) when statistically optimal model selection is infeasible.

4.3 Experience-Weighted Attraction (EWA) Model

Next, we study economic learning models commonly used in the literature. Although

various kinds of models have been invented, many of (not all of) them are categorized into

two groups: reinforcement learning (RL) and belief learning (BL). Reinforcement learning is

based on the idea that, if an agent chose an action and the outcome was good, that action is

“reinforced” in the sense that the agent is more willing to choose it. This can be formulated

as a model in which an agent has (unobserved) attraction (propensity) to an action, which

embodies how many payoffs it gained in the past. Belief learning, also known as fictitious

play, is a model in which an agent forms a belief on the choice probability of the opponent’s

action based on the weighted average of the past actions taken by the other player and plays

the best response to the belief.

Camerer and Ho (1999) developed the experience-weighted attraction (EWA) learning

model, which is a hybridization of the reinforcement learning model and the belief learning

model. In their original EWA model, each player i ∈ I chooses action a ∈ C at period t with

probability,

Pi(a
t
i = a | ht) =

exp {λiA
a
i (t− 1)}∑

c∈C exp {λiAc
i (t− 1)}}

, (5)

where

Ni(t) = ρiNi(t− 1) + 1, and (6)

Aa
i (t) =

ϕiNi(t− 1)Aa
i (t− 1) +

[
δi + (1− δi)1 {ati = a}

]
πi(a, a

t
−i)

Ni(t)
. (7)
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Here Aa
i (t) is player i’s attraction to action a at period t. The agent chooses actions according

to the logit of these attractions as expressed in (5).

We have 14 parameters to estimate in total: for each player i ∈ I, λi, ρi, ϕi, δi,

(A1
i (0), A

2
i (0), A

3
i (0)), and Ni(0); we normalize AK

i (0) = 0. Here λ expresses how accurately

the choice probability reflects the attractions. λi → +∞ means that the agent plays the

action that has the highest attraction with probability one, while λi = 0 implies that the

agent plays all actions with equal probability irrespective of the attractions. ρi, ϕi are the

discount factors and δi represents the ratio between RL and BL. Thus, naturally, we assume

λi ∈ [0,∞), ρi, ϕi ∈ [0, 1], and δi ∈ [0, 1].

When δi = ρi = 0 and Ni(0) = 1, the model (5)-(7) reduces to a reinforcement learning

model since the agent updates their attractions only if they actually take action j,

Ni(t) = 1 for all t, and

Aj
i (t) = ϕAj

i (t− 1) + 1
{
ati = j

}
πi(j, a

t
−i).

On the other hand, when δi = 1, ρi = ϕi and Ni(0) = 1, the model becomes a belief

learning model:

Ni(t) =
1− ρti
1− ρi

, and

Aj
i (t) =

ρNi(t− 1)Aj
i (t− 1) + πi(j, a

t
−i)

Ni(t)
.

To see why this is a belief learning model, define player i’s belief that the other player plays

c ∈ C as a weighted empirical frequency,

µc
i (t) =

∑t
τ=1 ρ

τ−1
i · 1

{
aτ−i = c

}∑t
τ=1 ρ

τ−1
i

.

Then we can show that Aj
i (t) is an expected payoff (with respect to µi) when player i plays

action j, that is,

Aj
i (1) = πi(j, a

1
−i) =

∑
c∈C

πi(j, c)µ
c
i (1)

Aj
i (2) =

ρiπi(j, a
1
−i) + πi(j, a

2
−i)

1 + ρ
=
∑
c∈C

πi(j, c)µ
c
i (2)

...

Aj
i (t) =

∑t
τ=1 ρ

t−τ
i πi(j, a

τ
−i)∑t

τ=1 ρ
t−τ
i

=
∑
c∈C

πi(j, c)µ
c
i (t).

Therefore, an agent following BL plays the best (logit-smoothed) response with respect to

their belief µi(t).

In O’Neill’s game, the roles of number cards are symmetric, and therefore the subject may

first choose between K and number cards, and when the number cards option is chosen, the
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subject further considers which number card to choose. Such a decision rule can be captured

by the following nested logit version of the EWA model (see, for example, Train (2009)). The

nested logit model has

Pi(a
t
i = a | ht) ∝

eλiA
a
i (t−1)/ηi

(∑
c=1,2,3 e

λi
ηi

Ac
i (t−1)

)ηi−1

if a = 1, 2, 3

eλiA
a
i (t−1) if a = K.

(8)

When ηi = 1, then (8) reduces to the original logit EWA model. In the limit when ηi tends

to +∞, the model effectively chooses K or number cards, and when the number cards option

is chosen, each number card is chosen with an equal probability. Our estimation result below

shows somewhere in between those polar cases.

4.3.1 Estimates of the Parameters

We estimate the parameters using maximum likelihood estimation using all sample data.

Table 5 presents the estimated model parameters and the standard errors of the four speci-

fications. We also report the likelihood ratio test statistic comparing the original EWA and

the other models *7.

The LR test clearly indicates that the original EWA model fits the data better than the BL

and the RL. The estimates of the mixing parameters in EWA, δR = 0.450 and δB = 0.000,

suggest that the red player plays the mixture of RL and BL, while the black player plays the

complete RL.

The difference between the original EWA and the nested EWA is also significant, but the

difference is smaller than the difference between the EWA and (RL or BL). The estimated

discount factors and the mixing parameters are very similar between the two models.

As expected, we find that the estimated initial attractors of the numbers are all negative

(compared to AK
R (0) = AK

B (0) = 0). Thus, both red and black players play K with a higher

probability than 1, 2, 3 from the beginning.

5 Machine Learning Models

In this section, we provide a brief overview of machine learning in comparison to conven-

tional econometric models. Machine learning refers to a class of models that make predictions

or decisions based on observable data. For our purposes, we focus on machine learning models

*7 For BL and RL, we report

LR statistic = 2×
(
(Log-likelihood of EWA)− (Log-likelihood of RL or BL)

)
.

For nested EWA, we report

LR statistic = 2×
(
(Log-likelihood of nested EWA)− (Log-likelihood of EWA)

)
.

Each test statistic asymptotically follows the chi-squared distribution whose degree of freedom is equal

to the difference in the number of parameters between the two specifications.
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Table 5. Estimation results of EWA-variant models

Models Logit Nested logit

EWA RL BL Nested EWA

Discount factors

ϕR 1.014 1.034 2.235 1.002

(0.006) (0.005) (0.022) (0.000)

ϕB 1.059 1.025 4.189 1.001

(0.009) (0.003) (0.136) (0.001)

ρR 0.870 0.000 = ϕR 0.901

(0.081) (0.021)

ρB 1.003 0.000 = ϕB 0.956

(0.016) (0.008)

Mixing parameters

δR 0.450 0.000 1.000 0.451

(0.030) (0.006)

δB 0.000 0.000 1.000 0.000

(0.027) (0.003)

Accuracy parameters

λR 0.480 0.084 0.370 0.961

(0.255) (0.004) (0.004) (0.194)

λB 0.894 0.094 0.333 2.237

(0.113) (0.003) (0.010) (0.335)

Nest parameters

ηR 1.000 1.000 1.000 5.777

(0.276)

ηB 1.000 1.000 1.000 9.038

(0.503)

Initial values

A1
R(0) −0.835 −6.413 −1.737 −5.411

(0.472) (0.692) (0.029) (1.136)

A2
R(0) −1.110 −8.520 −2.278 −6.080

(0.627) (0.772) (0.037) (1.276)

A3
R(0) −1.270 −8.366 −2.625 −6.510

(0.715) (0.758) (0.042) (1.365)

A1
B(0) −0.665 −2.285 −1.692 −3.843

(0.107) (0.571) (0.063) (0.604)

A2
B(0) −0.893 −5.863 −2.261 −4.443

(0.142) (0.636) (0.084) (0.698)

A3
B(0) −0.932 −8.836 −2.343 −4.507

(0.145) (0.714) (0.087) (0.708)

NR(0) 5.258 1.000 1.000 9.619

(2.748) (1.916)

NB(0) 5.162 1.000 1.000 20.378

(0.740) (2.981)

No. of Observations 77310 77310 77310 77310

No. of Parameters 16 10 10 18

Log Likelihood -208940.8 -209391.3 -209637.0 -208670.4

LR Statistic 901.0∗∗∗ 1464.4∗∗∗ 519.2∗∗∗

Notes: Maximum likelihood estimates of the parameters of EWA variant models.
Standard errors are in parentheses. Underlined values are determined by the model
restrictions and are not estimated. The LR Statistic is the likelihood ratio test statis-
tic comparing the EWA and the other models. *p<0.1; **p<0.05; ***p<0.01.
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to make a prediction:
y = f(x|β),

where x is the input data, y is the predicted outcome, and β is the vector of parameters. This

looks exactly the same as the conventional econometric models, but there are some notable

differences.

First, machine learning offers new functional forms that have not been employed in con-

ventional econometrics. Leading examples include deep learning, decision trees, and LASSO,

which we will explain and use in later sections.

Second, the main objectives of machine learning and econometrics are different. Machine

learning is all about selecting the best model to make a prediction (Figure 9a). The data

set at hand is partitioned into “training data” and “test data”, and the parameter values

of models are determined so that the goodness of fit is higher on the training data. Then

a prediction contest is conducted using the test data to select the model that makes the

best prediction. The main concern is how to make the best prediction, and the calculated

parameter values are oftentimes not paid much attention. This reflects the fact that some

leading machine learning models are “black boxes” and the meaning of parameters is not

immediately clear. (We will come back to this issue in Section 6).

In contrast, the main concern of econometrics is parameter estimation (Figure 9b). Here,

the model is given a priori (such as linear regression or logit), and assuming that the true

data-generating mechanism is within the model, the parameter values are estimated to infer

the true values. The magnitude, sign, and statistical significance of the estimated parameter

values are the main concerns of the researchers so as to understand how data is generated.

Third, machine learning is data-driven while econometrics is driven by theory. The ultimate

goal of machine learning is to make good predictions in real-life data sets. Machine learning

models are not derived by finding the optimal one in a certain class of functional forms for

a certain class of tasks, but instead by constantly running prediction contests on real-life

data to select and improve the existing models. As a result, the reason why certain models

perform well for certain tasks is often not well understood. In contrast, econometric methods

are derived from the statistical theory of optimal estimation.

In this paper, we adopt the machine learning paradigm of conducting a prediction contest

to compare conventional behavioral economics models and machine learning models in our

unique “big” data set derived from our mixed strategy experiment. We split our data into

training data and test data as illustrated in Figure 9a to see which models perform well. When

we find that machine learning models make good predictions, we try to “open” the black

boxes to gain insight into what factors are important in explaining the subjects’ behavior

in our experiment. This is in line with the recent trend in machine learning known as XAI

(explainable artificial intelligence). Before moving on to the description of the models, we

explain in the next subsection how data sets are split in the machine learning approach.
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(a) Machine learning models

(b) Econometric models

Figure 9. Difference between econometric models and machine learning models. The left

panel 9a describes machine learning models, and the right panel 9b describes econometric

models.

5.1 Cross Validation

If we split the data set at hand as in Figure 9a, we can conduct a prediction contest only

once. In the machine learning approach, however, prediction contests are generally conducted

multiple times on the given data set. This is called cross-validation (CV)*8, and works as

follows. First, the whole data set is randomly split into K subsets of an (almost) equal

size, with the typical value of K being 5. Since our data contains 2577 pairs, we created

two subsets of 516 pairs and three subsets of 515 pairs. Call them D1, . . . , D5. Second, the

first subset D1, which accounts for 20% of the whole data set, is set aside as test data, and

parameter fitting is conducted on the remaining 80% of training data D2∪· · ·∪D5. Then we

evaluate the performance of the trained model using the test data D1. In general, we set aside

Dk as test data, conduct parameter fitting on the remaining training data
⋃

h̸=k Dh, and then

measure its prediction performance using Dk. This process is repeated for k = 1, . . . , 5. In

this way, even though we have a single set of data, we can conduct prediction contests five

times.

We use CV to compare the out-of-sample prediction performance of machine learning mod-

els and conventional behavioral economics models. The performance measures we adopted

and the other details are discussed in Section 7.

*8 Specifically, this process is called leave-one-out cross-validation.
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CV is also used to determine the hyperparameters of machine learning models. In this

case, we split the training data (in each CV) into sub-training data and sub-test data, and

choose the hyperparameters of a model so that it minimizes the average prediction error (KL

divergence between the prediction and the actual choices) in the sub-test data. Details of the

procedure will be explained when we describe the machine learning models that we consider

in the following subsections.

5.2 Decision Trees

One of the most commonly used machine learning models is the decision tree. The

decision tree model partitions the space of “features” of data recursively according to a tree

structure, and it returns predictions, one for each subset of features finally obtained by the

tree (Figure 10). Figure 10 shows a tree with depth 2. The depth of the tree is defined to

be the maximum length of paths from the root to the terminal nodes of the tree.

Chose K last period?

Won last period?

Prediction I

NO

Prediction II

YES

NO

Chose 1 last period?

Prediction III

NO

Prediction IV

YES

YES

Figure 10. An example of a decision tree.

In this paper, we predict the choice probability of each action using a classification tree.

The decision tree automatically classifies past histories of play according to the similarity of

current action choices. We need, however, to provide the set of “features” of past history of

play that the decision tree utilizes to perform its classification. We use 893 features that are

binary variables based on the history of the past three periods *9. We do not have enough data

points to go beyond three-period histories, as we discussed in Section 4.1. The 893 features

of history of play (action profile) in the past three periods form a set F = {f1, . . . , f893},
where each feature fn is a property of the three-period history whose occurrences can be

answered by Yes or No. An example of a feature is whether the focal player won in the last

period or not. Note that a feature f corresponds to a subset of three-period histories where

f is true. By choosing our feature set F , we are effectively looking at subsets of three-period

histories that have a clear meaning (in some informal, intuitive sense). Features such as “the

numbers of the cards chosen in the past three periods add up to 8” are a priori excluded

*9 The set of 893 features consists of all features that are used in LASSO and based on a history of up

to three periods.
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from our feature set, although such features may possibly play a role in the focal player’s

choice and this fact could possibly be detected by other machine learning models.

The input data for the decision tree comes in pairs (x, y) consisting of a feature vector

x = (x1, . . . , x893) and an outcome label y, where xi is equal to 1 if the history associated

with the data has the feature fi and otherwise 0, and y = (y1, y2, y3, yK) is the degenerate

probability vector of the current action of the focal player. For example, if the focal player

chooses K in the current period, we have y = (0, 0, 0, 1).

Each node m of a decision tree is associated with a subset of data Q(m), and two outgoing

branches Yes and No. The node m uses a feature f(m) to classify Q(m), and we let Q(m,Y )

be the subset of Q(m) that has the feature f(m) and Q(m,N) be the subset where the

feature does not hold. The successor node of m after the Yes (No) is associated with Q(m,Y )

(Q(m,N)).

The decision tree model chooses the feature f(m) to minimize the prediction errors of the

current choice of action in Q(m,Y ) and Q(m,N), which are defined in the following way.

Let y∗ja be the prediction of probability of action a in the data subset Q(m, j), j = Y,N .

The associated prediction error is given by the Kullback-Leibler (KL) divergence. The KL

divergence between two probability distributions p and q is defined as
∑

a pa log
(

pa

qa

)
, and

it is minimized at q = p. The KL divergence in the data subset Q(m, j), j = Y,N is

∑
(x,y)∈Q(m,Y )

∑
a

ya log

(
ya

y∗ja

)
= |Q(m, j)|

∑
a

yja log(
yja

y∗ja
), (9)

where yja is the average frequency of action a in the subset Q(m, j). Hence, the optimal

prediction to minimize the right-hand side is y∗ja = yja. In other words, the optimal prediction

in data subset Q(m, j) is given by its empirical frequencies of actions. Given this and the

convention for the KL divergence that ya log ya is defined to be zero when ya = 0, the

prediction error in terms of the KL divergence (9) reduces to

H(Q(m, j)) = −|Q(m, j)|
∑
a

yja log(y
j
a),

which is known as the Shannon entropy in the data subset Q(m, j). In summary, our decision

tree chooses the feature f(m) to minimize the total prediction error in terms of the KL

divergence, which is equal to the sum of the Shannon entropies

H(Q(m,Y )) +H(Q(m,N)).

The decision tree branches in this way until the prespecified depth is reached*10. The

subsets associated with the final nodes of the tree partition the whole data set, and the

*10 If we cannot further classify the past three-period history before reaching the prespecified depth,

branching from node m is suppressed. For example, when node m is reached after “f = (K,K) is

played in t-1, Yes”, “f ′ = (1, 2) was played in t-2, Yes”, and “f ′′ = (K, 1) was played in t-3”, that

uniquely pins down the past three-period history and there is no room for further classification.
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prediction of choice probability in each subset is given by the average of the choice vector y,

which is equal to the vector of empirical frequencies of the cards in the subset.

Now, how is the maximum depth of the tree determined? The depth is called a hyper-

parameter, which determines the overall structure of the model, and it has to be chosen

before the parameter fitting (training) of the model is performed. The choice of hyperpa-

rameter is made using the “nested” cross-validation method, and it works as follows. In

cross-validation, we split the data into five subsets of equal size D1, ..., D5 and let Di be

the test data and
⋃

h̸=i Dh be the training data for i ∈ {1, . . . , 5}. Next, each training data

subset
⋃

h ̸=i Dh is again partitioned into subsets of equal size di1, . . . , d
i
5. And then, for each

depth k = 1, 2, . . . , 12, we fit the decision tree model with training data
⋃

h̸=j d
i
h and derive

the prediction performance using the test data dij for each j ∈ {1, . . . , 5}. The prediction

performance is measured by the Kullback-Leibler divergence of the action actually chosen

in the test data from the prediction. Finally, we select the maximum depth of the tree that

achieves the best average prediction based on five test data subsets di1, . . . , d
i
5. In this way, we

can select the maximum depths of the tree for training data
⋃

h ̸=i Dh for each i ∈ {1, . . . , 5}.
This is the cross-validation process for selecting the hyperparameter, and the other machine

learning methods in this paper also select their hyperparameter in this way.

The above decision tree model can be regarded as a procedure for selecting the right-hand

side variables in the multinomial logit model (1) to be estimated by maximum likelihood. Let

us illustrate this fact by the example of a decision tree in Figure 10. Let DK(−1), DW (−1),

and D1(−1) be the dummy variables (indicator functions) for “the focal player chose K in

the last period”, “the focal player won in the last period”, and “the focal player chose 1 in

the last period.” The decision tree in Figure 10 is equivalent to the maximum likelihood

estimation of the multinomial logit model 1 where the right-hand side variables are

xi =


DK(−1) ×DW (−1)

DK(−1) × (1−DW (−1))
(1−DK(−1))×DW (−1)

(1−DK(−1))× (1−DW (−1))

 .

Maximum likelihood estimation of the coefficients of DK(−1) × D1(−1), one for each card,

makes the estimated choice probability when DK(−1) × D1(−1) = 1 equal to the empirical

frequencies of actions in the subset of data where DK(−1) ×D1(−1) = 1, as we explained in

Section 4.1. In summary, the above-mentioned version of a decision tree provides a procedure

for selecting the right-hand side variables of the multinomial logit model, where the variables

take the form of the product of history dummies and (1−history dummy)’s.

5.2.1 What we can learn from the decision tree model

We fit the trees using all of the samples. The chosen maximum depth of the trees for the

red player is 4 in four trees and 3 in one tree, and those for the black player, 4 in three trees

and 3 in two trees. The decision trees are depicted in Appendix A.1.
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Figure 11. Feature importance and the number of occurrences (duplicates within a single tree

do not count) in five trees for the red player. The gray dots correspond to feature importance

in each CV and the black dots are the average of them. Note that we plot the importance of

the features that appear at least twice. For the importance of the features that appear only

once, see Appendix A.1.

Figure 12. Feature importance and the number of occurrences (duplicates within a single

tree do not count) in five trees for the black player. The gray dots correspond to feature

importance in each CV and the black dots are the average of them. Note that we plot the

importance of the features that appear at least twice. For the importance of the features

that appear only once, see Appendix A.1.
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Figures 11 and 12 summarize the feature importance and how many of the five trees used

each variable for branching for the red player’s and black player’s trees. The importance of

feature f , denoted by I(f), is defined as follows. First, for any subset of data Q, consider

predicting the probabilities of current action by means of the empirical frequencies in the

subsetQ. The resulting Shannon entropy isH(Q) = −|Q|
∑

a ya log(ya), where y is the vector

of average frequencies of current action in subset Q. Second, define the feature importance

by

I(f) =

∑
m∈M(f) ∆Hm∑

m ∆Hm
,

where M(f) is the set of nodes associated with feature f and

∆Hm = H(Q(m))−H(Q(m,Y ))−H(Q(m,N))

is the reduction of Shannon entropy at node m. Intuitively, the feature importance of f

indicates how much the use of feature f improves the prediction of the model. Looking at

Figures 11 and 12, we can see that for both players, the choice probability is affected when

the player did not take the action in the past two periods. In particular, the decision tree

shows that actions not taken in the past two periods are more likely to be taken in the current

period.

5.3 LASSO

Another machine learning model that is commonly used in the literature is LASSO (Least

Absolute Shrinkage and Selection Operator), which enables us to perform an automatic

selection of variables. We include m = 1731 variables (for each card c ∈ C) as potential

covariates of the multinomial logit model and add an L1-penalty term into the log-likelihood.

That is, the LASSO estimator β̂ is the solution to the following penalized log-likelihood

maximization problem

max
β

LL(x | β)− λ||β||1, (10)

where LL is the log-likelihood function

LLi(x | β) ≡
S∑

s=1

30∑
t=1

∑
a∈C

βT
i,axi(h

t
s)− ln

(∑
c∈C

exp
{
βT
i,cxi(h

t
s)
})

for each i = R,B. Here xi(·) ∈ Rm is the candidate covariates computed by the histories.

The 1,731 candidate covariates that we employ are selected according to the following

criteria. First, we include all one- and two-period history dummies. Second, since we do

not have enough observations of longer histories, we focus on the reduced histories such as

histories of K-number profiles and histories of win-lose patterns to incorporate the associated

dummies in the last four periods. Finally, we also incorporated non-dummy variables that

count how many times the same action as in the previous period was consecutively chosen
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(= the maximum number n such that a given action was played in the last n periods). Since

LASSO minimizes the sum of the absolute values of the estimated parameters, the size of

covariates should be normalized. We normalize those non-dummy variables to a mean of 0

and a standard deviation of 1. All of the variables we used are briefly explained in Table 6

and fully listed in Table 22 in the Appendix.

Constant

Period specific constant

R’s action in t-1, t-2, t-3, t-4

B’s action in t-1, t-2, t-3, t-4

Action profile in t-1, t-2

R’s action was a number

or K in t-1, t-2, t-3, t-4

B’s action was a number

or K in t-1, t-2, t-3, t-4

Action profile (number

or K) in t-1, t-2, t-3, t-4

History of R’s actions in

the last 2, 3, 4 periods

History of B’s actions in

the last 2, 3, 4 periods

History of action pro-

files in the last 2 periods

History of action profiles (number

or K) in the last 2, 3, 4 periods

R played 1 (or 2, 3, K) consec-

utively in the last three periods

B played 1 (or 2, 3, K) consec-

utively in the last three periods

R did not play 1 (or 2, 3,

K) in the last three periods

B did not play 1 (or 2, 3,

K) in the last three periods

R played K (or numbers) in t-1, ....,

t-n consecutively (n=4, 5, ..., 29)

B played K (or numbers) in t-1, ....,

t-n consecutively (n=4, 5, ..., 29)

R won or lost in pe-

riods t-1, t-2, t-3, t-4

History of winners in

the last 2, 3, 4 periods

History of actions (number or K)

and winners in t-1, t-2, t-3, t-4

History of action profiles (number or

K) and winners in t-1, t-2, t-3, t-4

Table 6. The list of variables included in LASSO. Here t is the current period, that is, the

LASSO model predicts the action in period t using the variables listed above.

The Lagrange multiplier of the LASSO optimization (10), λ (> 0), is a hyperparameter

that determines how much the model penalizes the nonzero coefficients. As λ increases, the

estimated model tends to have fewer nonzero coefficients. We determined the value of λ

by the “nested cross-validation” method that we explained for our decision tree model. In

particular, we performed cross-validation within the training data; each training data set

of the cross-validation are randomly partitioned into four subsets of an equal size, and we

repeated the following process for various candidate values of λ:

1. Choose one subset (1/4 of the training data) as the “subtest data,” and use the union

of the remaining subset (3/4 of the training data) as the “subtraining data.”
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2. Estimate the LASSO model with a given value of λ in the subtraining data.

3. Calculate the KL divergence between the mixed actions predicted by the estimated

LASSO model and the actual choices.

We repeated this for four times for the four possible choices of the subtest data. We then

choose the best λ that minimizes the average KL divergence over the four rounds of the

nested cross-validation that perform items 1-3 above.

5.3.1 Estimates of the parameters

Table 7. Number of Coefficients Selected by LASSO

Player Coefficient No. of Selected Variables (average

of five CVs)

No. of Commonly Selected Vari-

ables in all five CVs

Red βR,1 68.0 12

Red βR,2 65.0 21

Red βR,3 68.8 18

Red βR,K 113.2 44

Black βB,1 83.6 30

Black βB,2 79.6 31

Black βB,3 71.8 21

Black βB,K 111.0 45

Since the number of variables selected by LASSO is so large that we cannot fully present the

estimated parameters in the main body of the paper, we show in Table 22 in Appendix A.2 the

parameters estimated for the red player using the entire data set (instead of presenting five

estimation results of cross-validation). The chosen LASSO hyperparameter is λ∗ = 0.0439,

and we get 317 variables in total (the sum of the numbers of nonzero coefficients of the four

cards). One way to gain some insight from such a large number of variables selected by

LASSO is to focus on the subset of variables that are commonly selected in the five rounds of

cross-validation for performance testing. The next subsection examines those “key” variables

selected by LASSO.

5.3.2 What we can learn from LASSO

Since the five rounds of cross-validation choose different values of λ and utilize different

training data, the selected variables differ across the five rounds of cross-validation. To gain

some insight from LASSO, we examined the variables commonly selected in the five rounds.

Among m = 1731 variables, the average number of selected variables is 315 for the red

player and 346 for the black player in total. On the other hand, the number of commonly

selected variables is 95 for the red player and 127 for the black player. The details of the

numbers are shown in Table 7.

We present the list of those variables in Table 8 (the red player, card 1) and Table 9 (the red
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Table 8. Parameters that LASSO does not eliminate in all five train-test splits (the

red player, card 1)

βR,1

Value Count

Constant −0.084 53586
R played 1 at t-1 −0.132 12781
R played 2 at t-2 0.068 12772
R consecutively played 1 in the last 2 periods 0.097 2378
R played 1 at t-1 and 2 at t-2 −0.046 3011
R did not play 1 in the last 2 periods 0.275 30411
R consecutively played 1 in the last 3 periods 0.618 574
R did not play 1 in the last 3 periods 0.071 22266
B did not play 1 in the last 3 periods 0.081 22533
R consecutively played 1 and lost in the last 2 periods 0.139 771
Period Constant (t=6) 0.065 2061
Period Constant (t=27) −0.035 2061

Notes: The value column indicates the point estimates. The count column specifies the
number of histories in which each dummy variable should be equal to 1.

player, card K). Other tables are relegated to Appendix A.2. The values of the parameters

are estimated using all the sample data. The complete estimation table is shown in Table 22

in Appendix A.2.

5.4 Deep Neural Network (DNN)

Deep neural networks (DNNs) are the most successful machine learning model and have

many applications such as image recognition, natural language processing, drug discovery,

and self-driving cars. For the estimation of behavioral models, show that their DNN model

outperforms a reinforcement learning and a fictitious play model in terms of the prediction

of outcomes in 2× 2 repeated game experiment data.

We created a five-layer neural network composed of one input layer, one output layer, and

three hidden layers described in Figure 13. To allow us to make the time series prediction, we

use the four-period history of (the action profile, the payoffs to the focal player) as input and

then estimate the choice probabilities of the current period*11. That is, each input is a vector

of (16 + 1)× 4 = 68 dummies across four periods*12, and each output is a four-dimensional

probability vector. The number of cells in the three hidden layers are hyperparameters that

are determined by the nested cross-validation, where the number of cells in each hidden layer

is optimally selected from the candidate set {10, 30, 50}. Each cell in the hidden and output

layers is “densely connected” in the sense that it is connected to all cells in the previous

*11 Even if the payoff to the focal player can be deduced from the action profile, including the payoff data

helps to reduce the prediction error of the model.
*12 For each period, we used 16-dimensional dummy variables of action profiles and 1-dimensional payoff

of the red player as input data.
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Table 9. Parameters that LASSO does not eliminate in all five train-test splits

(the red player, card K)

βR,K

Value Count

Constant 0.595 53586
B played K at t-2 0.014 19378
B played numbers at t-2 −0.011 34208
R played K at t-3 0.007 18621
R played numbers at t-3 −0.006 34965
B played K at t-3 0.060 19447
B played numbers at t-3 −0.032 34139
R played 2 at t-4 −0.021 11394
R played K at t-4 0.029 18695
R played numbers at t-4 −0.024 34891
B played K at t-4 0.119 19513
B played numbers at t-4 −0.027 34073
Action profile at t-2 is (1, 3) 0.042 2577
K profile at t-2 is (N, K) 0.006 11895
K profile at t-2 is (N, N) −0.006 23063
K profile at t-3 is (K, K) 0.002 7503
K profile at t-3 is (N, N) −0.130 23021
Three-period K history is ((N, K), (K, N), (N, K)) 0.084 601
Three-period K history is ((N, N), (K, N), (N, K)) −0.144 1179
K profile at t-4 is (K, K) 0.021 7515
K profile at t-4 is (N, N) −0.131 22893
R played K at t-1 and t-2 0.109 6169
R played K at t-1 and numbers at t-2 −0.044 12468
R played numbers at t-1 and K at t-2 −0.044 12459
R played numbers at t-1 and t-2 0.007 22490
B played K at t-1 and numbers at t-2 −0.099 12642
R consecutively played K in the last 3 periods 0.231 2252
B consecutively played K in the last 3 periods 0.168 2592
R consecutively played numbers in the last 3 periods 0.113 14039
R consecutively played numbers in the last 4 periods 0.058 8698
R consecutively played numbers in the last 7 periods −0.096 2223
R consecutively played numbers in the last 8 periods −0.118 1525
R consecutively played numbers in the last 10 periods −0.115 793
B consecutively played numbers in the last 4 periods 0.034 8404
B consecutively played numbers in the last 6 periods −0.066 3476
B consecutively played numbers in the last 8 periods −0.260 1659
R won by playing 3 at t-1 0.076 4609
R won by playing K at t-1 and won by playing a number at

t-2

−0.138 2222

B won by playing a number at t-2 −0.020 19206
B won by playing a number at t-1 and lost by playing K at

t-2

−0.036 2473

K profile at t-2 is (N, N) and B won −0.017 8061
Period constant (t=6) −0.072 2061
Period constant (t=23) 0.058 2061
Period constant (t=30) 0.197 2061

Notes: The value column indicates the point estimates. The count column specifies
the number of histories in which each dummy variable should be equal to 1.
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layer.

Figure 13. An illustration of a DNN model.

DNN recursively determines the value of each cell in the following way. Let j be a cell in

the hidden or output layer and let i = 1, ..., I be the cells in the previous layer. The branch

from i to j is associated with parameter (or “weight”) wij , and given the values xi of previous

cells i = 1, ..., I, the “input” to cell j is determined as
∑

i wijxi and the value of j, denoted

xj , is determined by “activation function” f as xj = f(
∑

i wijxi). We adopt the ReLU

activation function f(x) = max{0, x} for all cells except those in the output layer. Cells in

the output layer use the softmax activation function (multinomial logit). The parameters

wij are selected to provide the best fit of the DNN choice probabilities to the actual choice

frequencies in the training data in terms of Kullback-Leibler divergence.

We used the Keras TensorFlow implementation of a standard DNN. Our loss function

is the Kullback-Leibler divergence (cross-categorical entropy) between the estimated choice

probability vector and the 0-1 indicator vector. To avoid overfitting, we used early stopping

and dropouts when training the model. We trained our model with the Adam optimizer on

Google Colaboratory.

5.5 Long-Short Term Memory (LSTM)

Another commonly used neural network model for sequential data is the recurrent neural

network (RNN). Unlike a DNN, an RNN has a closed circuit that can maintain states inside

its network. Long-Short Term Memory (LSTM) is a specific type of RNN architecture

developed by Hochreiter and Schmidhuber (1997), which solves the drawback of simple RNNs
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only being able to sustain states for several periods. It is widely used in applications such as

Google and Facebook machine translation systems, Google’s voice recognition application,

and autocorrect on iOS.

Figure 14. An unfolded illustration of the structure of our LSTM model architecture based

on Gers, Schmidhuber and Cummins (2000). A repeating module at time t (specified by

a rounded rectangle) takes two state vectors (a long memory and a short memory) and a

new data vector as inputs, and outputs new state variables (a new long memory and short

memory) and estimated choice probabilities at time t. A detailed explanation of a module is

given in Figure 15. This figure is drawn by the authors based on Olah (2015).

We use the Keras TensorFlow implementation of LSTM, which is a standard network

introduced in Gers, Schmidhuber and Cummins (2000). Our LSTM model is illustrated in

Figure 14. This model includes two state vectors, short memory st and long memory ℓt, both

of which are numerical vectors of dimension L. Here L is a hyperparameter of the model and

is determined by the cross-validation procedure.

In each period t, a repeating module (specified by a rounded rectangle in Figure 14) takes

as input a dummy vector of an action profile and the red player’s payoff in period t−1, along

with short memory st and long memory ℓt. Then it updates both memories as st+1 and ℓt+1,

and then outputs the choice probability at time t, pt.

The detailed structure of a module is illustrated in Figure 15. It consists of three different

sections: a forget gate, an input gate, and an output gate. The forget gate is a filter

that determines how much it transmits the previous long memory based on the short memory

and the new input vector. Formally, a three-layer network (consisting of an input layer, one

hidden layer, and an output layer) takes as input (st, xt) and outputs a single scalar in [0, 1]

with a softmax activation function. That is,

fσ(Wforgetf · (st, xt)
T)
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Figure 15. The detailed structure of our LSTM model. A module of each period t consists

of three different sections; a forget gate, an input gate, and an output gate. The forget gate

is a filter that determines how the module transmits the previous long memory based on the

short memory and the new input vector. The input gate processes the short memory and the

new input vector to update the long memory. Finally, the output gate generates the short

memory from the updated long memory and outputs the choice probabilities of this period.

The figures are drawn by the authors based on Olah (2015).

where Wforgetf is a 1 × (L + 17) weight matrix and fσ(v) = ev

1+ev . Then the previous long

memory is multiplied by this value. If the filter value is 1, it fully transfers the long memory.

If the value is 0, it completely discards the long memory of the past.

Next, the input gate processes the short memory and the new input vector to update the

long memory. A three-layer network takes as input (st, xt) and outputs an L-dimensional

new memory with activation function tanh(v) = ev−e−v

ev+e−v ∈ [−1, 1], whose graph is an upward-

sloping S-shaped curve. Another three-layer network generates a filter that takes as input

(st, xt) and outputs a scalar in [0, 1] with a softmax activation function, and the former
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vector is multiplied by the latter scalar:

fσ(Winputf · (st, xt)
T)× ftanh(Winput · (st, xt)

T)

where Winput and Winputf are L × (L + 17) and 1 × (L + 17) weight matrices, and

ftanh((v1, . . . , vL)) = (tanh(v1), . . . , tanh(vL)). The updated long memory ℓt+1 is

ℓt+1 = fσ(Wforgetf · (st, xt)
T)× ℓt + fσ(Winputf · (st, xt)

T)× ftanh(Winput · (st, xt)
T).

Finally, the output gate generates the short memory from the updated long memory and

outputs the choice probabilities for this period. Here, we also use a three-layer network with

a softmax activation function as a filter. The new short memory is generated as

st+1 = fσ(Woutputf · (st, xt)
T)× ftanh(ℓt+1),

where Woutputf is a 1× (L+ 17) weight matrix, and then the attractors are

(A1
i (t), A

2
i (t), A

3
i (t), A

K
i (t)) = fσ(Woutput · st+1),

where Woutput is a 1× (L+17) weight matrix. The softmax function is applied element-wise.

The final choice probabilities are as follows.

P (ati = a | ht) =
Aa

i (t)∑
c∈C Ac

i (t)
.

Our loss function is the Kullback-Leibler divergence (cross-categorical entropy) between

the estimated choice probability vector and the 0-1 indicator vector. To avoid overfitting,

we use early stopping and dropouts when training the model. As a result of cross-validation,

we adopt L = 10 to 40 from the candidates {5, 10, 15, . . . , 50}. We trained our model using

the Adam optimizer on Google Colaboratory. On average, it takes 3.4 minutes to train one

model in each train-test split.

6 Modified Economic Models

6.1 Modified EWA

Our next task is to incorporate what is captured by the machine learning models into

the leading behavioral economics model EWA. The deep learning models DNN and LSTM,

however, are complete “black boxes”. This is because the parameters of those models are

the weights attached to the branches in their network structure, so the meaning of those

parameters is not immediately clear. Therefore, we focus on the lessons we can learn from

the more “explainable” machine learning models, the decision tree and LASSO. The decision

tree model shows that important factors in determining current action choice are (1) whether

a certain action was consecutively played (or not played) in the last two periods, and (2)

the choice of the previous action (Figure 11 and 12). Those factors also appear in the list of
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the variables commonly selected in the five cross-validations of the LASSO model (Table 8).

Given those observations, we add three terms (A), (B), and (C) into the attractions of the

original EWA as in (11).

P j
i (t) ∝ exp

{
λ×

(
Aj

i (t− 1) + γj
i 1 {ai(t− 1) = j}︸ ︷︷ ︸

(A)

+

βj
i 1 {ai(t− 1) = ai(t− 2) = j}︸ ︷︷ ︸

(B)

+αj
i1 {ai(t− 1) ̸= j and ai(t− 2) ̸= j}︸ ︷︷ ︸

(C)

)}
.

(11)

(A) reflects the fact that agents tend to avoid the number cards that they chose in the

previous period. (B) captures the effect of a certain action being consecutively played twice

in a row. (C) captures the effect of a certain action that was not played in the last two

periods.

We estimate parameters in five different specifications. Modified EWA (1) to (3) only

include the term (A) with different parameter restrictions. Modified EWA (4) and (5) include

all terms (A), (B), and (C).

Modified EWA (1) is the formulation under the assumption that all gammas are the same:

γj
i = γi for all j ∈ C. Modified EWA (2) allows the gammas to differ between the numbers

and K but uses the same gamma for each of the numbers. Modified EWA (3) adopts the

fully flexible form of gamma. Specification (1), (2), and (3) have 9, 10, and 12 parameters

to be estimated for each player i = R,B.

Modified EWA (4) and (5) incorporate all terms (A), (B), and (C). Modified EWA (5)

imposes no further restrictions. Modified EWA (4) is similar to Modified EWA (2) in the

sense that we impose restrictions saying that number cards are treated equally. That is,

• γ1
i = γ2

i = γ3
i

• β1
i = β2

i = β3
i

• α1
i = α2

i = α3
i .

We have 16 parameters in total (for each player i = R,B) with the specification (4). Modified

EWA (5) estimates all 20 parameters separately.

6.1.1 Estimates of the parameters

We estimate the parameters using all the sample data using maximum likelihood estima-

tion. Table 10 presents the in-sample performance comparison among the original EWA and

the five modified EWAs. We see that specifications (4) and (5) exhibit particularly high

performance compared to the original.

Table 11 and 12 present the point estimates of the parameters and the standard errors.

We show the estimates of the new parameters (γ, β, α) only because the other parameters

are not very different from those of the original EWA model. In Table 11, we find that all the
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Table 10. In-sample Performance Comparison of Estimated Modified EWA Models

Models Logit

EWA (1) (2) (3) (4) (5)

#Pairs 2577 2577 2577 2577 2577 2577

#Observations 77310 77310 77310 77310 77310 77310

#Parameters 16 18 20 24 32 40

Log Likelihood -208930.0 -207885.0 -207710.7 -207712.4 -206879.2 -206867.0

LR Stat. (EWA) 2090.0∗∗∗ 2438.7∗∗∗ 2435.2∗∗∗ 4101.7∗∗∗ 4126.1∗∗∗

Notes: Performance comparison among estimated modified EWA models. We estimate all the
models by maximum likelihood estimation using all sample data. The estimated parameters are
shown in Table 11, 12. The LR Stat. represents the likelihood ratio test statistic that compares
each model to the original EWA. *p<0.1; **p<0.05; ***p<0.01.

estimates of gamma are negative, which implies that subjects tend to avoid their previous

action. This effect is stronger for the number cards than for the king. We can also see this

feature in the transition matrix in Table 4. The significance of this feature is reflected in the

fact that the difference between the log-likelihood of Modified (1) and those of Modified (2)

and (3) is relatively large, compared to the small difference between those of (2) and (3).

Table 11. Estimated Parameters of Modified EWA (1), (2), and (3)

Models Logit

Modified (1) Modified (2) Modified (3)

Avoid previous actions

γ1
R −0.514 −0.670 −0.645

(0.062) (0.060) (0.054)

γ2
R = γ1

R = γ1
R −0.666

(0.056)

γ3
R = γ1

R = γ1
R −0.652

(0.055)

γK
R = γ1

R −0.200 −0.191

(0.018) (0.016)

γ1
B −0.160 −0.310 −0.436

(0.006) (0.010) (0.012)

γ2
B = γ1

B = γ1
B −0.398

(0.011)

γ3
B = γ1

B = γ1
B −0.401

(0.011)

γK
B = γ1

B −0.077 −0.096

(0.003) (0.003)

Notes: Estimates of the parameters of the modified EWA model (1), (2), and (3) by
maximum likelihood estimation. Standard errors are in parentheses. We show only
the estimates of the new parameters (γi) in the table because the other estimates are
not very different from the original EWA model. Underlined values are determined
by the model restrictions and are not estimated.
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We also observe the avoidance of previous actions in modified EWA (4) and (5) in Table 12.

In addition, the estimates of α show that the players tend to choose a card more frequently

when it was not played in the last two periods.

We need to be more careful when we interpret the coefficients of β, which measure the

effect of playing the same card twice in a row. Although all the coefficients of β are positive,

it does not mean that a player tends to play a certain card with a higher probability than

usual when she has played it consecutively in the last two periods. If a player played 1 twice

in a row, for example, then it means she did not play the other cards 2, 3, and K in the last

two periods. Therefore, the attraction of 2, 3, and K increase by α2
i , α

3
i , and αK

i at the same

time the attraction of 1 increases by γ1
i + β1

i . Thus, in Table 13, we calculate the overall

effects on Modified EWA (4) attractions when a player has played a certain card (1) in the

previous period or (2) twice in a row. We chose to show the effects in EWA (4) because it

is the best one out of the modified EWA models in our performance comparison in Section

7. The effects in the table are computed in the following way. For example, if a red player

played card K in the last period (case (1) in the table), then the log odds between playing

K and 1, log PK

P 1 , changes by -0.030 points, which is equal to λRγ
K
R . If a red player played

card K consecutively in the last two periods (case (2) in the table), in contrast, the log odds

between playing card K and card 1 changes by -0.112 points, which is equal to the overall

effect λR(γ
K
R + βK

R − α1
R). The overall effect is negative, even though the value of βK

R is

positive. Case (2) in Table 13 shows that the same is also true for all cards. If a certain

card is played twice in a row, the choice probability of that card decreases, even though the

estimated values of betas are all positive.

We observe that when a player has played K consecutively in the last two periods, she

will play K less frequently compared to when she has only played K once in a row (i.e., only

in the previous period). This is in line with our intuition that a naive player would avoid

choosing the same card repeatedly. In contrast, when a player has played 1 (or 2, 3) twice in

a row, her choice probability of the same card decreases, but the magnitude of this negative

effect is smaller compared to the case of playing it only once in a row. Although this effect

is somewhat puzzling, it is also observed in the LASSO estimates in Table 8.

6.2 Discussion on the additional terms

Literature on psychology has shown that people are poor at generating an i.i.d. random

sequence (c.f., Bar-Hillel and Wagenaar, 1991). The common finding is that people tend to

generate a sequence with more alternations and fewer repetitions than in an i.i.d. sequence.

This kind of sequence matches a naive decision-maker’s expectations under the gambler’s

fallacy, which maintains that if a certain outcome occurred (or did not occur) in the previous

period, the outcome is less (or more) likely to occur in the current period. This is an

implication of the law of small numbers (Rabin, 2002), reflecting a naive decision-maker’s
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Table 12. Estimated Parameters of Modified EWA (4) and (5)

Models Logit

Modified (4) Modified (5)

Value Std Value Std

Avoid previous actions

γ1
R −0.426 0.097 −0.503 0.132

γ2
R = γ1

R −0.403 0.106

γ3
R = γ1

R −0.375 0.099

γK
R −0.051 0.012 −0.049 0.014

γ1
B −0.117 0.007 −0.140 0.008

γ2
B = γ1

B −0.124 0.007

γ3
B = γ1

B −0.088 0.005

γK
B −0.041 0.003 −0.042 0.003

Play the same card twice in a row

β1
R 0.649 0.147 0.687 0.180

β2
R = β1

R 0.683 0.178

β3
R = β1

R 0.586 0.154

βK
R 0.371 0.084 0.374 0.098

β1
B 0.151 0.008 0.183 0.010

β2
B = β1

B 0.152 0.009

β3
B = β1

B 0.114 0.007

βK
B 0.121 0.007 0.124 0.007

Did not play the same card in the

last two periods

α1
R 0.507 0.114 0.447 0.117

α2
R = α1

R 0.568 0.147

α3
R = α1

R 0.543 0.141

αK
R 0.444 0.101 0.452 0.119

α1
B 0.139 0.007 0.147 0.007

α2
B = α1

B 0.116 0.006

α3
B = α1

B 0.162 0.008

αK
B 0.080 0.005 0.082 0.005

Notes: Point estimates and standard errors of the parameters of the modified EWA models using
maximum likelihood estimation. We show only the estimates of the new parameters γi, βi, αi in the
table because the other estimates are not very different from the original EWA model. Underlined
values are determined by the model restrictions and are not estimated.
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Table 13. Overall Effects of Modified EWA Models

(1) a(t− 1) = j (2) a(t− 1) = a(t− 2) = j

log
P j

P 1
log

P j

P 2
log

P j

P 3
log

P j

PK
log

P j

P 1
log

P j

P 2
log

P j

P 3
log

P j

PK

Red
j = 1 -0.255 -0.255 -0.255 -0.170 -0.170 -0.132

j = K -0.030 -0.030 -0.030 -0.112 -0.112 -0.112

Black
j = 1 -0.260 -0.260 -0.260 -0.234 -0.234 -0.103

j = K -0.092 -0.092 -0.092 -0.132 -0.132 -0.132

Notes: Overall effects of the (A), (B) and (C) terms in Modified EWA (4) when a player plays a
certain card (1) in the previous period or (2) twice in a row. For example, when a red player has
played card K in the previous period, then the log odds between playing 1 and K decreases by 0.030
points, which is equal to γK

R . Another example is when a red player has played card 1 consecutively
in the last two periods, the log odds between playing card 1 and card 2 decreases by 0.170 points,
which is equal to λR(γ

1
R + β1

R − α2
R).

tendency to expect that the frequencies of outcomes in a short i.i.d. sequence would match

the probability distribution of the outcomes. Fudenberg et al. (2021) compares the models

of Rabin (2002) and Rabin and Vayanos (2010) and non-parametric estimation models and

shows that the latter fare better.

Similar tendencies are also observed in the strategic situation, i.e., in the setting of a

repeated two-person zero-sum game with a unique mixed strategy equilibrium (Brown and

Rosenthal, 1990; Rapoport and Boebel, 1992; Budescu and Rapoport, 1994). These papers

estimate logit models as Equation (1) with indicator variables for each player’s choices up to

the past two periods, and show that certain outcomes in the past affect the choice probability

of current action. In Brown and Rosenthal (1990) and Rapoport and Boebel (1992), both

one’s own past choices and the opponent’s choices influence players’ current choices. In

contrast, Budescu and Rapoport (1994) shows that the dependence on the other player’s

past action is largely insignificant. Our modified EWA models (4) and (5) can be regarded

as more elaborate versions of those observations, which incorporate the effects of a certain

action chosen (or not chosen) twice in a row. Such variables are not included in those papers.

7 Performance Comparison

All of our models predict the probability distribution of the current action in each period for

each player. In the terminology of machine learning, our prediction comparison is categorized

as supervised learning, and each model f is a function that assigns to each set of features

X of the past history of play a vector of probabilities P̂ = (P̂ (1), P̂ (2), P̂ (3), P̂ (K)), where

each P̂ (c) ≥ 0 is a predicted probability of choosing the action c ∈ C and
∑

c∈C P̂ (c) = 1.

We conduct performance comparison in terms of external validities, in the sense that we
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compare the predictive powers of the models in the data set that is not used for parameter

estimation.

7.1 Performance Measures

We evaluated the predictive powers of the models using loss functions. The value of a

loss function represents the accuracy of the prediction. The smaller the loss, the better the

prediction. We adopt four measures in total: L1 norm, L2 norm, Kullback-Leibler (KL)

divergence, and our own novel strategic error rate.

Given a set {(Xn, Pn)}Nn=1 of N sets of features and degenerate probability distributions

that indicate which action was actually selected *13, we calculate the average loss L of a

trained model f as

L =
1

N

N∑
n=1

l(P̂n, Pn), (12)

where P̂n = f(Xn) and l is a given loss function. Each loss function is defined as:

L1 =
∑
c∈C

|P̂n(c)− Pn(c)|, (13)

L2 =

√∑
c∈C

(P̂n(c)− Pn(c))2, (14)

KL divergence =
∑
c∈C

Pn(c) · log
(
Pn(c)

P̂n(c)

)
, and (15)

Strategic Error Rate = 1− π−i(BR−i(P̂n), Pn), (16)

where BR−i(P̂n) is a best response of the opponent player against the predicted mixed actions

P̂n of the focal player i,

BR−i(P̂n) ∈ arg max
c−i∈C

∑
ci∈C

P̂n(ci) · π−i(ci, c−i),

and π−i(BR−i(P̂n), P ) is the potential payoff to the opponent player if she played a best

response to the opponent’s mixed action that is predicted by the model. It is equal to the

hypothetical probability of winning because the payoff is 1 if the player wins and otherwise

0. Note that for a generic choice of P̂n, there is a unique best reply, and this was indeed the

case for our estimated models.

The L1, L2, and the KL divergence *14 are standard ways of measuring prediction errors,

*13 P (c) = 1 if c is chosen, and P (c) = 0 otherwise.
*14 Here the KL divergence is equal to the negative log-likelihood: if the agent selects action c ∈ C, then

KL divergence = 1× log

(
1

P̂ (c)

)
+
∑
c′ ̸=c

0× log

(
0

P̂ (c′)

)

= − log P̂ (c)

= −
∑
c′∈C

P (c′) log(P̂ (c′)) = Log-likelihood.
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but the values of these measures are somewhat difficult to understand. This is because what

is being measured is the “distance” between a probability distribution of action (prediction of

a model) and actual action taken (degenerated probability distribution), and therefore even

if the model accurately predicts the choice probability, the distance is not equal to zero. For

that reason, when we are told that the KL divergence of a model is 1.36, we do not have a

feel for the accuracy of the model’s prediction. Note also that this difficulty does not arise if

the prediction and data are both scalars. For example, if models predict the dollar income of

subjects and the error rate is .92, we can understand that the prediction error is on average

92 percents. In contrast, the meaning of the value of KL divergence is not immediately

clear. To address that problem, we introduce a novel performance measure, the strategic

error rate. It is defined as the hypothetical loss probability when the opponent of the focal

player chooses the best response to the estimated choice probabilities of the focal player.

The meaning of this measure is illustrated as follows. In the mixed strategy equilibrium, the

black player’s loss rate is 0.4, and if model X of the red player has a strategic error rate 0.38,

it means that when the black player utilizes this model to predict the red player’s behavior

in any given single period and makes the best reply, on average (across all single periods in

the sample), she can reduce the loss rate by 0.02 relative to the mixed strategy equilibrium

loss rate. We stress that the strategic error rate concerns the usefulness of the estimated

model in any given single period. In principle, if the back player in the previous story makes

the best reply to the estimated model of the red player in one period, this has two effects:

(i) the loss rate in the current period changes, and (ii) the future behavior of the red player

changes, which affects the future loss rates of the black player. Our notion of strategic error

rate only measures the former effect.

As we mentioned in Section 5.1, we compare the model performance using leave-one-

out cross-validation. We first randomly divided the entire 2577 pairs in our data into five

subgroups D1, . . . , D5. Then, for each k = 1, . . . , 5, we trained (estimated) each model using

its training data ∪ℓ ̸=kDℓ and computed their out-of-sample losses using its test data Dk. We

call this pair of training data and test data a CV-k split. The final loss score of a model is

the average of the losses in all five CV splits.

In particular, we compute the average loss of the trained model fk for the red player in

the CV-k split as follows. For each pair in its test data s ∈ Dk,

• We first estimate the choice probability at period 5 using the initial four period history

as features, P̂ 5
Rs

= fk(h
4
Rs

), and compute the period loss l(P̂ 5
Rs

, P 5
Rs

),

• Next we estimate the choice probability at period 6 using all past histories as features,

P̂ 6
Rs

= fk(h
5
Rs

), and compute the period loss l(P̂ 6
Rs

, P 6
Rs

), and

• We repeat this process until t = 30.

Note that we define 0× log(0) = limx→+0 x log x = 0 as usual in the literature.
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Then we take the average of |Dk| pairs × 26 periods. That is,

(Average loss in CV-k) =
1

|Dk| × 26

∑
s∈Dk

30∑
t=5

l(P t
i(s), fk(h

t−1
s )).

We can use at most 26 periods for each pair because LASSO uses a four-period history of

action profiles as its explanatory variable.

7.2 Results

Performance comparison results are shown in Table 14 (for the red player models) and

Table 15 (for the black player models). Here L1, L2, KL, SER, and RC are the abbreviations

for the L1 loss, the L2 loss, the KL-divergence, the strategic error rate, and the relative

completeness defined below. We also counted the number of parameters we used in each CV

split. Each performance score and the number of parameters are the averages of the five CV

splits.

Both Table 14 and Table 15 show that the LSTM model exhibits outstanding performance

on all performance measures *15. Given that, we measure the relative predictive powers

of the models in terms of the error rate reduction from a naive benchmark in the form of

an i.i.d. mixture model (MLE const) to the best model LSTM. This leads to the notion of

relative completeness (RC) defined as

(RC of a model) =
(KL divergence of the model) - (KL divergence of MLE const)

(KL divergence of LSTM) - (KL divergence of MLE const)
,

where KL divergence is an average of the five CV splits. This is a version of the completeness

measure introduced by Fudenberg et al. (2021). If, in the above definition of RC, we replace

LSTM, the best model we have obtained, with the best one among all specifications of the

model equation (1), we obtain the completeness measure.

We observe that EWA, a leading learning model in behavioral economics, has relative com-

pleteness 0.309 (0.206) for the red (black) player. This means that EWA achieves only 30.9%

(20.6%) for the red (black) player of the predictive power of the state-of-the-art LSTM model

(in terms of the error rate reduction from the naive benchmark i.i.d. mixture model (the MLE

const). This result suggests that the EWA model fails to capture some important aspects

of actual human behavior in this game. The strategic error rates, which measure predictive

power in an intuitive way, of LSTM, EWA and the naive benchmark i.i.d. mixture model

(“MLE const” in Table 14) for the red player are presented in Figure 4 in the introduction.

*15 However, traditional econometric criteria of model selection, such as AIC and BIC in the training

sample, do not select LSTM due to its large parameter size. When we measure the performance

of singular models like DNN and LSTM, these traditional information criteria are known to be not

appropriate in the machine learning literature. We list the average AIC and BIC of the representative

models in Appendix B.3.
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Table 14. Prediction Peformance Comparison (Red Players)

Red Players

L1 L2 KL SER #Params RC

Simple Logit

MLE Constant (Baseline) 1.473 0.855 1.361 0.348 4 0.000

MLE 1 profile 1.467 0.853 1.355 0.347 64 0.246

MLE 2 profile 1.460 0.852 1.355 0.344 1024 0.219

MLE 1 K-profile 1.472 0.855 1.360 0.348 16 0.010

MLE 2 K-profile 1.470 0.853 1.359 0.346 64 0.083

MLE 3 K-profile 1.466 0.852 1.357 0.337 256 0.142

MLE 4 K-profile 1.462 0.851 1.359 0.336 1024 0.063

EWA-variants

RL 1.469 0.853 1.357 0.337 5 0.135

BL 1.473 0.854 1.359 0.348 5 0.056

EWA 1.464 0.850 1.353 0.330 8 0.310

Nested EWA 1.462 0.849 1.352 0.328 9 0.346

Modified EWA (1) 1.457 0.848 1.346 0.326 9 0.580

Modified EWA (2) 1.456 0.848 1.345 0.324 10 0.623

Modified EWA (3) 1.456 0.848 1.345 0.324 12 0.623

Modified EWA (4) 1.450 0.845 1.339 0.314 16 0.853

Modified EWA (5) 1.450 0.845 1.339 0.313 20 0.849

Tree Algorithms

Decision Tree 1.463 0.851 1.351 0.340 14.4 0.372

LASSO

LASSO 1.455 0.847 1.343 0.324 317.0 0.710

Deep Learning Models

DNN 1.464 0.851 1.349 0.334 10324.0 0.483

LSTM 1.444 0.842 1.336 0.309 7212.0 1.000

Human 0.419

Notes: Average prediction performance scores measured by the test data. We
first randomly split the data into five disjoint groups. Then for each group, we
train a model using the data of the remaining four groups, and test the model’s
performance with it. Hyperparameters of each model are optimized by cross-
validation within the training data. We take the averages of these five train-test
splits as the performance scores above. Here L1, L2, KL, SER, and RC are the
abbreviations for L1 loss, L2 loss, KL-divergence, strategic error rate, and relative
completeness.
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Table 15. Prediction Peformance Comparison (Black Players)

Black Players

L1 L2 KL SER #Params RC

Simple Logit

MLE Constant (Baseline) 1.465 0.852 1.354 0.564 4 0.000

MLE 1 profile 1.458 0.849 1.347 0.540 16 0.308

MLE 2 profile 1.451 0.847 1.346 0.537 1024 0.326

MLE 1 K-profile 1.464 0.851 1.353 0.563 16 0.056

MLE 2 K-profile 1.462 0.850 1.351 0.562 64 0.112

MLE 3 K-profile 1.460 0.849 1.351 0.558 256 0.128

MLE 4 K-profile 1.457 0.849 1.355 0.561 1024 -0.034

EWA-variants

RL 1.477 0.856 1.365 0.578 5 -0.446

BL 1.465 0.851 1.354 0.559 5 0.017

EWA 1.460 0.849 1.349 0.555 8 0.201

Nested EWA 1.458 0.848 1.347 0.552 9 0.292

Modified EWA (1) 1.453 0.846 1.343 0.529 9 0.472

Modified EWA (2) 1.453 0.846 1.342 0.526 10 0.513

Modified EWA (3) 1.453 0.846 1.342 0.526 12 0.513

Modified EWA (4) 1.447 0.844 1.337 0.520 16 0.714

Modified EWA (5) 1.447 0.844 1.337 0.520 20 0.714

Tree Algorithms

Decision Tree 1.456 0.848 1.345 0.534 12.8 0.358

LASSO

LASSO 1.448 0.845 1.337 0.526 348 0.704

Deep Learning Models

DNN 1.456 0.848 1.342 0.533 10544 0.515

LSTM 1.438 0.840 1.330 0.508 7908 1.000

Human 0.581

Notes: Average prediction performance scores measured by the test data. We
first randomly split the data into five disjoint groups. Then for each group, we
train a model using the data of the remaining four groups, and test the model’s
performance with it. Hyperparameters of each model are optimized by cross-
validation within the training data. We take the averages of these five train-test
splits as the performance scores above. Here L1, L2, KL, SER, and RC are the
abbreviations for L1 loss, L2 loss, KL-divergence, strategic error rate, and relative
completeness.
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Note that the non-parametric model that depends on two-period histories of action profiles

(MLE 2-profile) fares much worse (RC is 21.9% for the red player) than EWA (for the red

player) and the machine learning models. Given that we have a sufficiently large data set

for non-parametric estimation (see Figure 8), this is a reliable indication that subjects have

a longer memory than two periods.

Finally, we find that LASSO performs relatively well, with performance being 71.0%

(70.4%) of the LSTM performance for the red (black) players. In contrast to the best model

LSTM, which is a complete black box in the sense that the parameters of the model are hard

to interpret, LASSO is easier to interpret. We can look at the explanatory variables com-

monly selected in the five rounds of cross-validation for the LASSO model. As we explained

in Subsection 6.1, from the LASSO model as well as the decision tree model, we deduced that

(i) the subjects tend to avoid choosing the same card consecutively, and (ii) the subject’s

action is influenced by whether a certain action was (or was not) chosen consecutively in the

last two periods. By adding those components to the original EWA model (the Modified

EWA models in Table 14 and Table 15), we succeeded in improving the performance from

30.9% to 85.3% for the red player (from 20.1% to 71.4% for the black player). This is illumi-

nating because the two building blocks of EWA, belief learning and reinforcement learning,

are general-purpose learning rules, but they do not capture the subject’s desire to make their

own behavior unpredictable. As we elaborated on in Subsection 6.1, the added components

can be interpreted as naive attempts to choose actions over time that “look like” a random

sequence, and adding those components substantially improves the performance of EWA.

Behavioral economics literature emphasizes the importance of identifying the learning rules

that are commonly applicable to a wide range of problems, but our result suggests the impor-

tance of context-specific learning rules (our context is a situation where one wants to make

one’s own behavior unpredictable). Lastly, note that there is still a 15% to 29% difference

between the modified EWA and the LSTM models, so we still have room for improvement if

we are to fully understand the learning mechanisms of the human subjects.

7.3 The Role of Big Data

In this section, we show that we obtained quite a reliable performance comparison of

various models thanks to our big data. To substantiate our claim, we show what happens if

we artificially reduce the data size for our parameter estimation and performance comparison.

This exercise shows that we need a data set which is an order of magnitude larger than the

conventional laboratory experiments to detect the superiority of machine learning models.

First, we show that the relative performance of the models is stable across the five rounds

of cross-validation (Figure 16).

Next, we show how the figure for the red player changes if we conduct parameter fitting

and performance comparison in artificially reduced data sets (Figure 17). When we use all
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Figure 16. Comparison of KL divergence of five representative models in each CV split (left:

red players, right: black players). We observe that LSTM outperforms the other models in

all splits. Precise KL divergence numbers are shown in Table 23 and 24 in the Appendix.

of the data with sample size equal to 67,002, the relative performance of models is clearly

distinguishable in the sense that (i) there are wide margins in the error rates of different

models and (ii) the ranking of the models is stable (unchanged) across the five rounds of

cross-validation. If we reduce the sample size to 26,000, the performance of the top two

models, LSTM and modified EWA, becomes quite similar. If we further reduce the sample

size to 13,000, the ranking of the models differs across the five rounds of cross-validation, and

most importantly, the dominance of LSTM disappears. These features are more prominent

if the sample size is reduced to 2,600 with 100 pairs, which is comparable to the sample sizes

of many in-person laboratory experiments.

Note that reducing the data size has two effects. First, the estimation of parameters

becomes less accurate. Second, the comparison of the error rates of the models becomes less

reliable. Since Figure 17 captures both effects, we now present those two effects separately.

We first show what happens when we use the full set of data for performance comparison

but artificially reduce the training data for parameter fitting (Figure 18), which is probably

one of the most important findings we obtained. The figure shows that the performance of

the traditional models, Constant, EWA, and Modified EWA, do not improve if we increase

the training data size beyond 200 pairs. In contrast, the error rates of the machine learn-

ing models, LASSO and LSTM, keep on decreasing as the training data size increases, and

when the training data size reaches 1,200, LSTM just overtakes Modified EWA. The figure

thus clearly shows that we need at least 1,400 pairs (2,800 players) to see that the machine

learning model LSTM substantially dominates the conventional behavioral model. Conven-

tional laboratory experiments usually have at most hundreds of subjects (Figure 5), and our

result suggests that we need a subject pool that is an order of magnitude larger than the
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Figure 17. Performance comparison of five representative algorithms for the red player when

we artificially reduce both training data and test data. In the upper right panel, for

example, we randomly picked up 400 (100) pairs from the original training (test) data in

each CV and used it as training (test) data. Precise KL divergence numbers are shown in

Table 23 in the Appendix.

conventional ones if we want to see the full potential of machine learning models.

Second, we use the full data set for parameter fitting but artificially reduce the test data

size for performance comparison (Figure 19). This figure shows that a test data set of 20 pairs

(40 players) does not effectively reveal the true predictive powers of the models, but that

with more than 100 pairs (200 players) is good enough. In summary, the improved accuracy

of performance comparisons as we increase the data size, which we saw in Figure 17, is due

to more accurate parameter estimation (especially for the machine learning models), and it

is largely not due to higher resolution of performance comparison.

8 Conclusion

Our results are summarized in Figure 20, which shows the relative rate of reduction in

prediction errors from the naive benchmark i.i.d. mixture model (MLE const), or more pre-

cisely, the relative completeness. It shows that the machine learning models outperform the

conventional behavioral model (EWA), and most notably a version of deep learning model
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Figure 18. Average performance (in five CVs) of the representative algorithms for the red

player when we artificially reduce training data. An x-axis value of 800 means that we

randomly sampled 800 pairs from the original training data in each CV split, and conducted

parameter fitting with the 800 pairs only. We computed the KL divergence figures using the

original test data (we do not decrease test data). Detailed numbers are shown in Table 25

in the Appendix.

of LSTM fares substantially better.

This figure also illustrates the “capture and decode” research program explained in the

Introduction. The shaded area represents the regularities or mechanisms of the subjects’

behavior that are not present in the conventional behavioral model EWA but “captured” by

the best machine learning model we consider, LSTM. Those regularities are encoded in the

estimated parameters of the LSTM model. Since these parameters are the weights attached

to the branches of the network structure of the LSTM model, their role and meaning are

not immediately clear. Hence, we need to open the “black boxes” of the machine learning

model to understand what the model captures. This is the “decoding” stage, and we tried

to gain insights from the more “interpretable” machine learning models, the decision tree,

and LASSO. This led us to incorporate certain additional terms into the EWA model, which

represent the subjects’ naive attempt to create a sequence of actions that “look like” a random

sequence. The resulting modified EWA model successfully “decodes” approximately 70% to

85% of what is captured by the best machine learning model, LSTM. The remaining 15-30%

of the captured regularities is yet to be decoded or explained, and this poses a challenging

future research agenda.
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Figure 19. Test data resolution: performance comparison of five representative algorithms for

the red player when we artificially reduce test data. In the upper right panel, for example, we

randomly sampled 100 pairs from the original test data in each CV. We trained the models

with the original training data and evaluated performance with smaller test data. Panels

(a)-(d) in this figure correspond to those in Figure 17. Precise KL divergence numbers are

shown in Table 26 in the Appendix.
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Figure 20. The relative rate of prediction error reduction from the näıve benchmark model

(relative completeness) for the red player. Blue text indicates to machine learning models.
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