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We study the role of medical knowledge versus professional networks in 

treatment choices and patient survival, using medical specialty variation 

among specialists and physician-patients with advanced cancer. We control 

unobserved doctor quality by matching comparable patients by attending 

doctors and admission periods. Compared to nonphysician-patients, physician-

patients are less likely to have surgery/radiation/checkups and more likely to 

receive targeted therapy, spend more on drugs, and enjoy higher survival while 

spending less on coinsurance. The effect of professional networks explains 

some but not all patterns, leaving medical knowledge mechanisms to play a key 
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Growing literature in labor economics examines whether complete information or 

robust social ties can solve agency problems (Bandiera et al., 2009; Jackson & 

Schneider, 2011). Health economists joined this empirical investigation by 

randomizing doctors' races and vaccine incentives for patients (Alsan et al., 2019) 

or exploiting the exogenous variation of OBGYN doctors' rotating call schedules 

in doctor-patient clinical relationships (Johnson et al., 2016). They found that 

communication or patients' trust in physicians strongly affects the demand for 

preventive care (Alsan et al., 2019) or a cesarean section (Johnson et al., 2016). 

Both studies used compelling research designs to address unobserved doctor quality 

and patient selection problems. 

Besides experimental or quasi-experimental designs, observational studies have 

examined whether physician-mothers are more or less likely to have a Cesarean 

section than nonphysician-mothers.1 These studies had mixed results. Grytten et al. 

(2011) found that physician-mothers receive a Cesarean section more often, 

attributed to a closer relationship or better communication with their attending 

doctors. Conversely, Chou et al. (2006) and Johnson and Rehavi (2016) found that 

physician-mothers have a lower probability of receiving a Cesarean section. They 

attributed this to more knowledge of complications or potential side effects. 

Irrespective of underuse due to weak social ties or overuse due to asymmetric 

information, the relational and informational disadvantages were empirically 

inseparable because of the absence of data regarding medical specialty variation 

among the attending doctors.  

 
1 Alongside experimental designs, several observational studies have compared self-treatment with treating others to 

detect healthcare agency problems (Bronnenberg et al., 2015; Carrera and Skipper, 2017); Levitt and Syverson (2008) 
adopted the same approach to test for agency problems with expert-consumers. However, this comparison might be capturing 
the difference in the susceptibility of self-treatment versus treating others, not necessarily reflecting the physician-patients' 
effect on treatment choice, as noted by Ubel, Angot, and Zikmund-Fisher (2011) and Shaban, Guerry, and Quill (2011). 
Earlier studies avoided the susceptibility bias by comparing expert consumers to non-expert or physician-patients to other 
patients (Bunker and Brown, 1974; Hay and Leahy, 1982; Earle et al., 1993). 
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This paper evaluates the relative importance of the relational and informational 

influences on healthcare agency issues. We study inpatient doctors in a wide range 

of first/main specialties in Taiwan who have attended about 0.4 million patients 

with advanced cancer since 2004, including hundreds of physician-patients. To 

maintain an oncology subspecialty license, these doctors must regularly attend 

Taiwan Oncology Society's (TOS) conferences and training courses according to 

their specialty division. We exploit TOS's taxonomy to define the professional tie 

between each physician-patient and the attending doctor. Using the universal health 

insurance data, we include rich controls for patient attributes and quantify each 

physician-patient's medical knowledge of the diagnosed cancer by calculating the 

cancer caseload per specialty and hospital department. By looking at matched 

physician-patients with different specialties attended by the same doctor, we 

distinguish the effects of relational advantage (due to stronger professional ties) and 

informational advantage (owing to being more informed).  

Because of a lack of experimental variation, we address unobserved physician 

quality and patient-selection issues through Abadie and Imbens's (2006, 2011) 

nearest-neighbor matching method, which enables complex interactions among 

covariates without linearity assumptions. Our approach exploits the within-doctor-

hospital variation across matched patients treated during the same period, matched 

by patient types such as gender, cancer sites, and previous inpatient costs. This 

strategy allows us to minimize the bias from high-quality doctors with a higher 

probability of attending physician-patients. 

Before evaluating the relational and informational advantages, we follow the 

literature to compare physician-patients' treatment choices and survival with 

comparable nonphysician-patients. Our matching estimates show that the average 

physician-patient is less likely to adopt surgical/radiation therapies but more likely 

to use targeted drug therapy than other patients. Physician-patients also spend less 

on checkups and enjoy significantly higher survival rates from six months to three 
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years. The magnitudes range from 0.2 to 0.4 standard deviations, all statistically 

significant at conventional levels. 

These basic results conform to relational/informational mechanisms and 

competing explanations, such as the early diagnosis and treatment of physician-

patients. We rule out competing hypotheses empirically. Doctors in the universal 

cancer registry are equally likely to detect cancers in the early or advanced stages 

for physician and nonphysician patients. Our matching estimates show no 

difference in the diagnosis-to-treatment interval between these two types of 

patients. Thus, doctors in our data do not diagnose or treat physician-patients sooner 

than others. 

Another scenario that could lead to our basic results of lower intensive care 

utilization rates among physician-patients is that nonphysician-patients are more 

likely to sue. Doctors might prescribe unnecessary procedures to less-informed 

patients to reduce their potential liability. Taiwan's medical liability literature 

shows that most lawsuits arise in neurosurgery, anesthesiology, and the ER (Chen 

et al., 2012). However, our data indicates that almost no patients visited these 

hospital departments for cancer care, suggesting that unequal propensities to sue 

are unlikely to drive our results.  

We take the basic results to assess the relative importance of relational and 

informational mechanisms using specialty variation across attending doctors and 

within-doctor variation in specialties across physician-patients. We measure each 

physician-patient's medical knowledge of their cancer site using the relative 

caseload attended by inpatient doctors in their specialty area. Furthermore, we 

quantify each doctor-patient pair's professional tie by whether their specialties 

belong to the same TOS specialty taxonomy and division of duties.  

By exploiting these proposed measures for network and knowledge, we explore 

the mechanisms behind the average physician-patient effects. Comparing 

nonphysician-patients to physician-patients with neither professional ties nor 
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specialist knowledge of the diagnosed cancer site, we find that fundamental 

physician superiority leads to different treatments but not higher survival. 

Restricting to physician-patients only, we compare whether they have a 

professional connection with the attending doctor. While a professional tie does not 

impact short-term survival, it improves long-term survival by promoting intensive 

care (i.e., surgical/radiation therapies) at extensive margins. However, neither 

physician superiority nor professional network explains why typical physician-

patients use more targeted therapy and less intensive care at extensive margins 

while enjoying significantly better short-term survival. This leaves information 

mechanism as the leading explanation for physician-patients' short-term survival 

benefits and treatment patterns. 

Professional networks and knowledge are exchangeable when physician-patients 

are less informed. We impose functional form assumptions on comparable 

physician-patients to quantify their informational exchangeability for a professional 

tie. For those with knowledge within the bottom quartile, having a network would 

be equivalent to a reduction of 6 to 18 percentage points (ppts) in specialist 

knowledge to maintain the same survival level or intensity of treatment. This 

finding points towards a potential scenario where the attending doctors abuse 

patient trust and prescribe different procedures than they would to more informed 

patients. Such a deviation can hurt patient survival. The result indicates the 

dominant role of information over professional ties in treatment choice and 

survival, particularly for patients lacking expert knowledge.2  

Our assessment of relational and informational mechanisms contributes a new 

dimension to the literature on healthcare agency problems. Previous research has 

focused primarily on doctor-driven channels, including financial incentives and 

 
2 Frakes et al. (2021) used data from the Military Health System and found that physician-patients received only slightly 

more medical care. The physician-patient effects potentially had relational advantages that might have canceled out the 
informational premium, leading to a near-zero effect. 
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asymmetric information. We fix both channels by looking within the doctor-

hospital variation across physician-patients specializing in various medical areas. 

Our findings demonstrate that the doctor-patient relationship matters for treatment 

choice and long-term survival at the advanced cancer stage (since it induces more 

information for informed patients). We also demonstrate information's dominant 

role for less informed patients. For both relational and informational mechanisms 

to work, the theoretical context must include the doctor-driven demand hypothesis 

via a framework in which risk-averse patients undervalue the benefit of intensive 

care, thus lowering demand. A stronger doctor-patient relationship can overcome 

risk aversion through better communication and trust-building to induce demand. 

It can also create a leeway for doctors to abuse their patients' trust and deviate from 

appropriate care. 

The rest of the paper proceeds as follows. Section 1 describes the data and 

institutional settings and summarizes our data features. Section 2 discusses our 

matching scheme for constructing the study sample, balance statistics, core 

estimates, and robustness checks. In Section 3, we examine alternative explanations 

for our findings. Section 4 explores the possible mechanisms by extending our 

research to contrast the relational and informational roles of treatment intensity and 

survival rates. Section 5 concludes the paper.  

1. Data and Institutional Settings 

A. Patient Cost-Sharing and Provider Reimbursement 

Taiwan's National Health Insurance (NHI) database is ideal for this study for 

several reasons. First, similarly to Canada, the Taiwanese NHI is a single-payer 

system for all citizens and residents. It consists of one uniform comprehensive care 

benefits package covering drugs, hospitals, and primary care (Hsiao et al., 2016). 

Since participation in NHI is mandatory, we can eliminate doubts about adverse 
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selection issues. Furthermore, we can address patient selection issues because the 

database includes beneficiaries who have never checked into hospitals. 

The NHI administration manages health expenditure inflation by reimbursing 

providers rather than charging deductibles or capping out-of-pocket expenses. The 

reimbursement is fee-for-service via a nationally uniform fee schedule, so providers 

cannot select patients or impose price discrimination against them. Since hospitals 

pay doctors via fee-for-service plus a basic salary that varies across hospitals, the 

financial incentives of doctors and hospitals are similar. 

Moreover, the NHI system imposes a minor penalty (only 7 US dollars in 2014) 

for hospital visits without primary care referrals. Consequently, all patients choose 

their attending doctors without a primary care referral. Since patients can freely 

check into different hospitals or request different doctors in the same hospital, we 

analyze doctor-patient relationships by examining hospital admissions data. 

Hospitals in Taiwan follow a closed-staff structure, in which the on-staff doctor 

assumes full responsibility for a patient's medical care. This institutional setting 

ensures that matching patients to physicians can precisely describe the interactions 

between doctors and patients during hospital admission. 

B. Data Linkage 

We merged several administrative data sources in the NHI database from 2000 

to 2018 through four steps using unique scrambled identifiers (IDs). First, we link 

the Cancer Registry to the Death Registry and Registry of Beneficiaries. This data 

linkage covers each cancer patient's diagnosis date(s), cancer site(s), and diagnosis 

stage. It also documents the treatment methods, demographic backgrounds (sex, 

birthday, income bracket, and registration district), the death record if the patient 

was deceased by the end of 2019, and whether they received hospital care.  
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Second, we identify the physician-patients and obtain their medical specialties by 

merging the data with the Registry for Medical Personnel and the Records of 

Board-Certified Specialists using their IDs. The former covers sex, birthday, and 

certification date, and the latter records each doctor's medical specialties and 

practice locations over time. Third, we compile the above data with the 

Reimbursement Claim Records to obtain inpatient care details per hospital 

admission one year after a cancer diagnosis. This data reveals the entire history of 

treatments, care volumes, hospital type and location, hospital ID, and attending 

doctor's ID, so we can calculate total inpatient care costs, coinsurance payments, 

and spending on medicines, surgery, tube feeding, radiation therapy, and 

examination to construct covariates and outcome variables. Finally, we derive the 

attending doctor's certified specialty and experience by linking the compiled data 

to the Registry for Medical Personnel and Records of Board-Certified Specialists, 

again using the attending doctor's ID. 

C. Time-Varying Doctor Selectivity 

Like physician experience, doctor selectivity can vary over time. We approximate 

an expert patient's knowledge about a doctor's selectivity at the time of diagnosis 

using the percentage of hospital admissions made by physician-patients three years 

before diagnosis. For instance, if a doctor has attended 1,000 hospital admissions 

in the past three years and only two were with physician-patients, the selectivity 

measure takes the value of 0.002. Unlike doctor experiences easily known to the 

public, doctor selectivity is typically not well known, except to expert patients.  

Physician-patients with advanced cancer choose more selective doctors than 

other patients. Table 1 shows that the selectivity level is 0.0039 (0.0022+0.0017), 

about twice that of other patients. Moreover, physician-patients select more 

experienced doctors than those attending nonphysician-patients by two years. 
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These differences are large in magnitude and statistically significant at the 95 

percent level. 

One significant challenge of our empirical work is that doctors' selectivity could 

grow as they become more experienced. As a result, the patients treated earlier are 

not necessarily comparable to those treated later by the same doctor. To remove 

this time-varying bias, we fix the attending doctor and the admission time to make 

a fair comparison. 

D. Descriptive Statistics 

Table A1 compares the cancer diagnoses between physician-patients and 

nonphysician-patients, including their attributes, inpatient care receipt, and survival 

outcomes. The data comprises over 1.2 million cancer diagnoses among 

approximately 1 million patients and 1,987 medical doctors. The number of cancer 

diagnoses exceeds that of cancer patients because a single patient can be diagnosed 

more than once for recurrence or confirmation. Only 0.01 percent of diagnoses 

involve multiple cancers. Of all the cancer diagnoses from January 2004 to 

December 2016, 30 percent were in the advanced stage at first diagnosis.3 We 

began the data period in January 2004, when Taiwan started adopting the American 

Joint Committee on Cancer's AJCC Cancer Staging Manual, the benchmark for 

classifying patients with cancer. Our analysis covers all the cancer sites listed in 

Table 5. 

Statistics indicate that 12 percent of all cancer diagnoses lead to no hospital care 

for all patients. About one-quarter of these diagnoses are in the advanced stage (not 

shown in the table). After controlling the interaction among patient demographics, 

prior medical spending, and admission year, we found that physician-patients were 

 
3 We identify a hospital admission as "advanced cancer" if the cancer is invasive (the fifth digit of HISTBET = 3), the 

patient has multiple cancer sites, or the cells are poorly differentiated anaplastic grade (GRADE = 3 or 4; for colon, rectum, 
or ovary cancer, any GRADE value except B). 



10 
 

significantly more likely to receive hospital care by one percentage point (with SE 

= 0.006; not reported in the table). This difference decreases when limiting the 

sample to advanced-stage cancer at the first diagnosis.  

Each cancer diagnosis possibly led to more cancer therapies, including surgery, 

chemotherapy, radiation therapy, palliative care, targeted therapy, hormone 

therapy, immunotherapy, stem cell treatments, and Chinese medicine. We excluded 

the last three from our analysis because less than one percent of diagnoses led to 

their adoption (Table A1). Namely, only 0.74 and 0.14 percent of diagnoses led to 

immunotherapy and stem cell treatments, and a mere 0.05 percent resulted in 

Chinese medicine therapy, though no physician-patient chose it.  

Because the Death Registry is available for this study only until December 2016, 

the N-year survival indicator needs to forgo N years of the combined data. After 

the first diagnosis, more than 80 percent of cancer patients survive beyond 180 

days, and about 60 percent live more than three years. 

One concern about the data is that doctors might have diagnosed physician-

patients with advanced cancer earlier than other patients. This sample-selection 

issue would result in overstating physician-patients' treatments and survival 

advantages. However, the statistics from Table A1 show no evidence for this. Our 

analysis includes all the hospital admissions associated with patients with advanced 

cancer at the first diagnosis. The first diagnoses for physician-patients are about 

three ppts more likely to be advanced cancer than other cancer patients. This 

difference drops below 0.7 ppts (with a standard error of 0.009 clustered at patient 

levels; not shown in tables) after holding constant the patient's sex, age, income, 

region, spending on inpatient care, and diagnosis year. These results suggest that 

potential bias due to earlier diagnoses by physician-patients is unlikely in our data. 

Table 1 compares hospital admissions between physician- and nonphysician-

patients with advanced cancer, with standard errors clustered at patient levels. This 

data covers 1,123,377 admission entries associated with 279,399 nonphysician 
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patients and 2,454 with 611 physician-patients. Given the closed-staff structure of 

Taiwanese hospitals, each admission matches one attending doctor to one patient. 

Statistics indicate that physicians are older and wealthier, tend to be male, and 

spend less on hospital care before the first cancer diagnosis. Both physician- and 

nonphysician-patients are equally likely to visit a doctor with a preexisting clinical 

relationship. However, physician-patients tend to opt for male or more experienced 

doctors practicing in single locations and specializing in a cancer-related area or 

working in a cancer-related department. 

Average nonphysician-patients wait 122 days to receive inpatient treatment after 

the first diagnosis, which is 5.59 days longer than physician-patients. This 

difference is significant at the 90-percent level. Additionally, nonphysician-patients 

stay in acute inpatient care units for about 7.89 days, while physician-patient stays 

are 10 percent (0.81 days) shorter at the 95 percent significance level. 

The unconditional mean difference tests in Table 1 show that physician-patients 

are less likely to undergo surgery and chemotherapy by 8 and 5 percent (0.05/0.66; 

0.04/0.8) but drastically more likely to use targeted treatment by 44 percent 

(0.05/0.11). However, these observed gaps may result from differences in health or 

socioeconomic conditions or the selection of different practice styles of the doctors.  

Finally, the bottom part of Table 1 shows that physician-patients with advanced 

cancer have the same 180-day survival rate as other patients. However, their 

survival rates for one and three years are higher, which may result from income, 

better health, better communication, closer relationships with attending doctors, the 

selection of doctors, or more cancer-related knowledge. The higher survival seems 

inconsistent for physician-patient comprising mostly older men than other patients 

with advanced cancer.  
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2. Core Estimates 

This section estimates the total effect on treatment choice and health outcomes. 

We adopt nearest-neighbor matching methods to address patient selection for 

unobserved doctor quality by contrasting physician-patients and comparable 

nonphysician-patients attended by the same doctor in the same hospital. We 

precisely match patients by their types to ensure patient comparability.4 Since the 

method nonparametrically matches admissions by patient types and time 

components within a doctor-hospital, we capture time-variant and invariant 

differences in doctor and hospital quality and complex interactions among all these 

covariates. 5  The following sections present balance statistics and matching 

estimates.  

A. Balance Checks 

We first leave the attending doctor unmatched and compare nonphysician-

patients to physician-patients with the same patient types in the same hospital. 

Table 2 shows the balance checks for two matching schemes: scheme-A (left panel) 

considers the exact match for patient kinds within hospitals, and scheme-B (right 

panel) within doctor-hospital. This initial match (scheme-A) excludes 98 percent 

of nonphysician-patients and 84 percent of physician-patients due to non-overlap 

in the covariate cells. Overlap is extremely rare in matching physician-patients with 

other patients with advanced cancer. Physician-patients are significantly older, 

healthier, wealthier, and more masculine. After matching, the total number of 

 
4 We include the following list of patient types: gender, 17 cancer sites, two-year age bins, four-year admission period, 

six residence regions, hospital spending quintile four years before diagnosis, income quintile in the year before the first 
diagnosis, and an indicator for a preexisting clinical relationship with the attending doctor three years before diagnosis. 

5 To control for time components, we also precisely match hospital entries according to admission periods and the 
attending doctor’s five-year experience bins at the time of diagnosis. 
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admissions is 2,811, comprising 685 admissions (for 98 matched physician-

patients) versus 2,126 admissions (for 565 matched nonphysician-patients). 

Although scheme-A narrows down the comparable patients, most are attended by 

different doctors. As a result, the observed outcome difference between physician-

patients and other patients might reflect physician quality effects. We improve the 

balance of matches by further matching according to attending doctors in scheme 

B. This step reduces the sample size to 552 admissions, of which 252 are for 31 

physician-patients while 300 are for 69 nonphysician-patients. 

Table 2 tests for balance between matching schemes for variables we did not 

match. We report the p-values of the mean difference (t-tests) and the distributional 

difference (KS-tests). Both tests have p-values equal to one for the precisely 

matched covariates. The scheme-A statistics indicate that the patients' pre-diagnosis 

health conditions, approximated by pre-trends in inpatient cost and prior drug 

spending, are balanced statistically. In contrast, the attending doctors who treated 

physician-patients have 0.3 standard deviations (SD) more experience than those 

who treated nonphysician-patients. The distributions of doctor gender, mobility, 

and specialties differ significantly between physician- and nonphysician-patients. 

After matching patients according to their attending doctors in scheme B, none 

of these pre-diagnosis attributes indicate significant gaps in sample means or 

distributions. This result strongly suggests that the attending doctor's matching 

substantially improves the balance of observables, making it plausible that 

unobserved confounders also balance out.  

B. Matching Estimates 

Table 3 reports the matching estimates for the two matching schemes, (A) within-

hospital comparison between 2,811 matched admissions and (B) within-doctor-

hospital comparison between 552 matched entries. In columns 1 and 5, we display 
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the SD in outcomes after removing the variation of the matched covariates. Further 

matching those 2,811 admissions with their attending doctors in scheme B reduces 

the SD by 15 to 75 percent. This reduction indicates that a large portion of the 

changes in outcome comes from the variation in attending doctors.  

As scheme-A does not match hospital entries according to attending doctors, 

physician-patients in this scheme tend to see more experienced and selective 

doctors than their nonphysician counterparts (Table 2). Suppose physician-patients 

prefer fewer tests and intensive therapies at the advanced cancer stage, and that 

experienced or highly qualified doctors tend to use more intensive care and order 

more tests.6 Because physicians can identify highly skilled doctors more easily than 

nonphysicians, we will understate the physician-patient's negative impact on 

intensive care utilization and checkup costs if we do not match them according to 

attending doctors.  

Further matching hospital entries according to the attending doctor and the 

hospital, we see scheme B drastically increases physician-patients' impact on 

surgical/radiation adoption and costs for examinations as expected. Physician-

patients are eight ppts less likely to undergo surgery and seven ppts less likely to 

adopt radiation therapy. These statistically significant estimates account for 42 and 

21 percent of the residual SD (0.083/0.20; 0.071/0.33). In contrast, scheme B 

reduces the intensive margins on intensive care volume. A physician-patient's 

impact on tube-feeding care volume drops from approximately 0.3 to 0.03 log 

points. The effect on radiation volume also substantially decreases and becomes 

statistically insignificant. These differing impacts of physician-patients on 

treatments and survival for the within-hospital and within-doctor-hospital matched 

samples suggest that physicians choose better doctors even within hospitals. 

 
6 The previous literature suggests intensive care can prolong life. Balsa and McGuire (2003) and Currie, MacLeod, and 

Van Parys (2016) show that patients benefit from the aggressive treatment of lung cancer or heart attacks via intensive 
procedures. 
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Our benchmark (scheme-B) shows that physician-patients are significantly less 

likely to adopt surgery by 0.4 SD (0.083/0.20) and radiation therapy by 0.2 SD 

(0.071/0.33). As for intensive margins, physician-patients utilize lower surgical 

volumes than their counterparts by 0.4 SD (1.159/2.87) while taking approximately 

the same radiation dose as other users. In addition, while using less intensive care, 

physician-patients with advanced cancer are less likely to adopt palliative care by 

0.2 SD (0.027/0.16). The only items that physician-patients utilize more are target 

drug therapy (0.167/0.28 = 60 percent more likely) and prescription medications 

(0.652/1.80 = 0.4 SD  greater costs).  

Physician-patients with advanced cancer spend more on medications. Given the 

current data accessibility, we cannot distinguish the sources of the spending hike. 

The higher spending could be due to higher quantity, more varieties, or increased 

prices (e.g., on patent brands) of drugs consumed. Given the universally uniform 

reimbursement prices and adjustments (Chen & Chuang, 2016), doctors/hospitals 

cannot charge different fees for the same drug. This institutional feature leaves the 

increased drug dose or variety for physician-patients as a likely explanation for the 

physician-patient's positive impact on medication cost.7  

C. Cost-Effectiveness 

According to medical guidelines published by the American Cancer Association, 

surgery/radiation therapies are more appropriate for early-stage cancers. A more 

advanced-stage cancer requires treatments that reach the entire body, e.g., 

chemotherapy and targeted drug therapy. We have shown that physician-patients 

receive fewer surgery/radiation treatments for advanced-stage cancers than the 

matched nonphysician-patients while spending more on drugs and more likely 

 
7 An online appendix explores whether our basic results derived from nonparametric matching are consistent with those 

using conventional fixed-effect models. The matching method provides considerably more precise and robust estimates than 
fixed-effect models using the same set of controls (Table A2).  
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using targeted therapy. If physician-patients’ treatments are clinically appropriate, 

our results indicate that underuse and overuse coexist among nonphysician-

patients. 

Physician-patients have indeed received different and better care. Columns 6-7 

of Table 3 show the considerable survival benefits of better treatments. Physician-

patients have significantly higher short-term survival than comparable patients by 

2.5 ppts (9.3 ppts) at 180-day (365-day) thresholds. Their long-term survival is also 

higher by 7.1 ppts at the three-year cutoff. These estimates account for at least 0.25 

SD. Besides the survival benefits of better treatments, physician-patients pay 

significantly less for coinsurance by 0.226 log points. Overall, physician-patients 

receive cost-effective care relative to what the matched patients received.  

3. Competing Explanations 

Several theories could explain our observed physician-patient intensive care 

volume reduction and survival advantages. Physician-patient relational or 

informational benefits might drive our results. We explore three alternative 

explanations for our observed decrease in intensive care volume for physician-

patients: physician-patients are diagnosed earlier with cancer or receive cancer 

therapies earlier than others; physician-patients exhibit a better health status than 

nonphysician-patients; and finally, physician-patients are more likely to sue for 

malpractice. We examine each hypothesis below. 

A. Physician-Patients Are Diagnosed Earlier or Treated Earlier 

Physician relationships and information advantages might have led to earlier 

diagnoses or treatments than nonphysician-patients, resulting in physician-patients 

needing less intensive care and surviving longer than others. However, using the 
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universal cancer registry, we have failed to accept the hypothesis that the physician-

patient status reduces the probability of being diagnosed too late (Section 1D). 

In Table 3, the matching estimates in panel B have shown that physician-patients 

have almost no impact on the number of days from diagnosis to treatment. 

Physician-patients have 1.3 days longer waiting times than other patients. This 

difference is statistically insignificant and accounts for less than two percent 

(1.3/75.6) of an SD. Thus, we cannot accept the hypothesis that physician-patients 

receive treatment earlier than nonphysician-patients.  

B. Physician-Patients Exhibit Better Health 

To ensure the matched physicians and other patients have similar health 

conditions, we only compare patients sharing the same quintile for hospital 

spending in the past three years before being diagnosed with advanced cancer. 

Nonetheless, it remains possible that physician-patients are healthier than their 

counterparts in a way not captured by our model. We test this hypothesis by 

checking the balance of variables excluded from the covariate list. The placebo test 

results in Table 2 are counter to this hypothesis. The matched patients do not differ 

significantly in their previous drug spending or pre-trend hospital costs. This 

pattern is robust, irrespective of scheme A or B (fixing the attending doctor or not) 

if we limit matched patients in the same hospitals who share the same attributes and 

cancer sites in the same admission period. These results suggest decreased 

surgical/radiation use is not attributable to physician-patients' better health status. 

C. Physician-Patients Less Likely Sue for Malpractice than Other Patients 

Another explanation for our finding of reduced intensive care and examinations 

for physician-patients is that they are less likely than nonphysician-patients to sue 

for malpractice. Currie and MacLeod (2008) suggest that concerns about potential 
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liability may make doctors carry out more unnecessary procedures, especially for 

nonphysician-patients in our context. To examine this explanation, we investigate 

the frequency of malpractice lawsuits for our matched data. 

During our data period (2004–2016), medical doctors in Taiwan were subject to 

no-fault or joint-and-several liability (Ministry of Health and Welfare, 2018). ER 

doctors, neurosurgeons, and anesthesiologists were the most likely to be sued and 

pay for non-economic damages (Chen et al., 2012). We investigate our data to see 

if physician-patients receive exceptionally high premiums in the riskiest 

departments. However, our matched data shows almost no physician-patients with 

cancer seeking care in these departments. Consequently, we find no evidence that 

defensive medicine could explain the lower utilization rates of surgical or radiation 

therapy among physician-patients with advanced cancer. Nevertheless, fear of 

litigation may still drive some doctors to prescribe different types of procedures to 

physician-patients because of unobserved differences, which we will address next.  

4. The Informational versus Relational Mechanisms 

This section further restricts our data to physician–patients only to probe how 

professional ties and medical knowledge affect treatment and survival.8 We aim to 

extract parts of the physician-patient impact driven by relational advantages, which 

previous studies often interpreted as informational. This identification is possible 

because the attending doctors in our data have a wide range of (sub)specialties. We 

exploit the specialty variation across doctors and the within-doctor variation in 

physician-patient specialties to separate relational and informational channels.  

One data limitation is noteworthy. The government regulates the board 

certification for 23 specialties, but does not specify any rules for subspecialty 

 
8 For this section, we include two additional years of NHID data of physician-patients to increase the sample size. 
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certification. The lack of regulations leaves the subspecialty certification at the 

discretion of medical associations outside the NHI database's scope. Consequently, 

we observe each doctor's first/primary specialty, not subspecialties. 

Taiwan's specialization structure in cancer care parallels Japan's pre-2007 

medical system before enacting the Cancer Control Act.9  Unlike doctors in the US 

referring cancer patients to oncologists, Taiwanese organ-specific specialists 

diagnose and remove operable cancer using endoscopic procedures or refer patients 

to oncologists for chemotherapy or radiation treatment for inoperable cancer. As a 

result, doctors in Taiwan attending to stomach cancer patients, for example, could 

be gastroenterologists, gastrointestinal surgeons, or radiation oncologists. We 

cannot observe whether those specialists have a certified oncology subspecialty.10  

A. Relational Mechanism: Mapping Specialists to Social Network 

As the attending doctor is fully responsible for caring for each admitted patient 

under Taiwanese NHI's close staff structure, each doctor-patient pair can well-

define a professional tie. Physician-patients sharing the doctor's specialty have a 

stronger tie because they might have met on professional occasions before the 

diagnosis. Given that subspecialties are unobservable, we infer patient-doctor 

networks from physician specialties, TOS taxonomy classification, and the doctor's 

hospital department. We follow the TOS taxonomy to classify networks, allow 

multiple networks per doctor, and summarize how we map specialists to a social 

network in Table 4.  

TOS covers eight of the top ten cancer-treatment specialties: three belong to the 

medical oncology network (category I, columns 1–3) and six to the surgical 

 
9 See Matsuura (2012), Takiguchi et al. (2012), and Tamura (2012). 
10

 This difference in specialization between American and Taiwanese medical systems might result from Taiwan's tight 
controls over hospital spending under single-payer, global-budgeting systems, which leave little room for most hospitals to 
pay enough premiums to oncology subspecialists. 
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oncology network (category II, columns 3–8).11 Although TOS lists pathologists as 

part of the medical oncology network, we separate them from the medical oncology 

network if they have no non-pathology specialty or have ever worked in an internal 

medicine department. Moreover, we follow TOS listing plastic and reconstructive 

surgeons as part of the surgical oncology network because of the double-dose 

surgical medicine training requirements for these surgeons to become board-

certified surgical oncologists. However, they have zero medical 

knowledge/caseload of cancer treatment. Finally, dermatologists and 

ophthalmologists treat most skin/eye cancers, although they are excluded from the 

TOS taxonomy (columns 9-10). We assume they have separate networks in areas 

denoted by 'Others,' unrelated to cancer care. 

B. Informational Mechanism: Mapping Specialists to Medical Knowledge of 

a Cancer Site 

We approximate each physician-patient's medical knowledge of their cancer site 

using the caseload per doctor in the same specialty relative to the highest volume. 

Table A3 illustrates our approximation process using advanced breast cancer. We 

first calculate the caseload per doctor by specialty and hospital department using 

100% inpatient reimbursement data (column 1) and then measure the relative 

knowledge/caseload of the cancer site per specialty across hospital departments 

(column 2). The top experts in breast cancer are surgeons in surgery departments 

because of their highest caseload. Doctors in other departments/specialties account 

for only a fraction of the top expert caseload. 

 
11 Since 1990, TOS has certified/renewed medical oncology and surgical oncology subspecialty licenses for eligible 

doctors. For most events, TOS separates trainees by their specialties (surgical versus medical). Medical oncologists treat 
cancer primarily using medications (e.g., chemotherapy, immunotherapy, and targeted therapy), whereas surgical oncologists 
use surgical methods to remove operable cancers. Both categories include the Taiwan Society for Therapeutic Radiology and 
Oncology, so we designate radiation oncologists to both professional networks. The Taiwan Neurosurgery Society is on the 
surgical oncology list. We find no neurosurgeon has treated any cancer physician-patients. Thus, we include neurosurgeons 
in the surgical oncology network, although we define their knowledge of cancer treatment as zero. 
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Physician-patients' previous workplaces or hospital departments are 

unobservable. In column 3, we approximate their knowledge levels of the cancer 

site given their first specialty by averaging the relative caseloads per specialty 

across departments, weighted by department shares. Table 4 summarizes the 

mapping of each cancer site to specialty-specific knowledge. The top experts in 

treating advanced breast cancer are surgeons in surgery departments, whose 

knowledge level in this cancer is 0.49, far below one, since most surgeons work in 

departments rarely treating breast cancer. This data feature appears among other 

specialists, e.g., radiation oncologists.  

We apply this method to all cancer sites. Specialties not listed by the columns 

have zero relative knowledge, e.g., neurologists, neurosurgeons, and plastic and 

reconstructive surgeons. The statistics indicate that the top organ-specific cancer 

experts typically are organ-specific specialists (except for bone cancer). Radiation 

oncologists have the top expertise in leukemia and stomach cancer treatment. 

Finally, we standardize physician-patients' knowledge levels given their cancer site.  

C. Explorations of Mechanisms  

Using the network indicator R and the continuous information measure K 

constructed in sections 4A and 4B, we evaluate the relative contributions of 

relational and informational advantages to cancer treatment and patient survival. 

Let 𝛽𝛽𝑅𝑅𝑅𝑅 denote the heterogeneous impact of a physician-patient on outcomes given 

the patient's network 𝑅𝑅 and knowledge 𝐾𝐾. We aim to deconstruct the full effect into 

four components:  

(1) 𝛽𝛽𝑅𝑅𝑅𝑅 = 𝛽𝛽 + ρ𝑅𝑅 + 𝑒𝑒(𝐾𝐾) + 𝑅𝑅δ(𝐾𝐾), 

where 𝑒𝑒(0) = 0 = δ(0). Parameter 𝛽𝛽 captures the difference in outcomes between 

nonphysician-patients and physician-patients with neither advantage. This 

parameter measures the physician status effect, quantifying the fundamental 
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superiority in general medical knowledge and occupational connections that 

distinguishes any physician-patient from other patients.  The network’s main effect 

measures the benefit of having a robust professional tie for patients without superior 

knowledge of the diagnosed cancer. 𝑒𝑒(𝐾𝐾) is the knowledge’s main effect if the 

patient has no professional tie with the attending doctor. ρ + δ(𝐾𝐾) is the network-

induced informational effect on outcomes.  

To evaluate these mechanisms, first, we identify the physician status effect (𝛽𝛽) 

by comparing nonphysicians to comparable physician-patients with neither 

advantage. Second, we estimate the total impact of a professional tie with the 

attending doctor (𝛽𝛽1𝑅𝑅 −  𝛽𝛽0𝑅𝑅). This impact includes the network's main effect and 

the network-induced informational effect, ρ + E[δ(𝐾𝐾)],  so relational and 

informational mechanisms are both at work. We cannot separate these two effects 

using matching methods because of lacking support given continuous medical 

knowledge.12 We overcome this challenge in the third step by estimating the value 

of a network by information percentile upon applying fixed-effect models to 

matched physician-patients. The following expands each step. 

C.1. Physician-patients' general advantage over nonphysician-patients 

Using scheme B, we first identify 𝛽𝛽 the physician status effect by matching 

nonphysician-patients and physician-patients with neither advantage. Before 

matching, physicians with neither advantage tend to be older but healthier males 

and more likely to seek care from a more experienced doctor than other patients 

(Table A4, columns 1-2). After matching exactly by doctor-hospital and patient 

types (footnote 4), we obtain a near-perfect balance between nonphysician-patients 

and physician-patients with no specific advantages. With stringent data 

 
12 Whenever we group physician-patients by their advantage (e.g., having a knowledge index below versus above the 

median), the sample shrinks drastically. The matched patients cluster among only one or two specific cancer sites, making it 
difficult to interpret. 
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requirements, we have only 5.6 percent of physician-patients (=168/3013) matched 

to 106 comparable nonphysician-patients treated by 17 doctors in 7 hospitals (not 

shown in tables).  

We document the matching estimates in Table 6 and highlight the coefficients 

with patterns resembling the average physician-patient effects. Physician-patients 

with no specific advantage take fewer examinations, use significantly less surgery, 

and stay shorter in acute inpatient care while significantly spending more on 

medications than nonphysician-patients (columns 2–3), consistent with the average 

physician-patients effects (columns 8–9, copied from Table 3). However, unlike 

average physician-patients, physician-patients with neither advantage receive 

targeted therapy with a 6.0 ppt lower probability but chemotherapy with a 9.4 ppt 

higher probability than nonphysicians. Both estimates are statistically significant 

and extensive in magnitude, accounting for more than half of the variation in 

utilization. Nevertheless, such substantially different treatments caused by 

physician status create no survival advantage (the bottom of columns 2–3).  

C.2. The professional network's total impact  

To investigate the relative importance of the relational versus informational 

mechanisms, we must compare the network's main effect (ρ) to the knowledge’s 

main effect (𝐸𝐸[𝑒𝑒(𝐾𝐾)]). To this end, we need a balanced sample of physician-

patients who have networks but no relevant knowledge versus those who have 

relevant knowledge but no network. However, this approach requires immense data 

support and stronger assumptions because the knowledge is continuous. Instead, 

we estimate 𝐸𝐸[𝛽𝛽1𝑅𝑅 −  𝛽𝛽0𝑅𝑅] the professional network’s total impact, including the 

network's main effect ρ and the network-induced informational effect 𝐸𝐸[δ(𝐾𝐾)].13   

 
13 A robust professional tie with the attending doctor can induce professional and general social interactions. Our 

identification cannot distinguish professional networks from general social interactions, as doctors in similar specialties 
interact for various reasons, not necessarily for professional networking. 
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We address the selection issues with the nonrandom assignment of professional 

ties by focusing on inpatient doctors who attend multiple comparable physician-

patients with different relational advantages. We precisely match these highly 

homogeneous patients according to scheme C – by doctor-hospital and patient types 

(gender, cancer sites, and previous hospital spending terciles). Additionally, we 

control their age, income, prior trends in inpatient spending, and doctor experience 

in the matching procedure. 14 

If patients select doctors based on their knowledge and characteristics and doctor 

selectivity and experience, we can remove selection bias by looking within these 

comparable physician-patients. Because doctor-patient matches are independent 

decisions made by patients using private information on preference and doctor 

quality, we can use patient choices to infer these unobservables for bias correction. 

Thus, our identification relies on the selection on observables and unobservables to 

rule out the possibility of reverse causality, as confirmed by our placebo tests.  

Matching scheme C shows that the total network impact and average physician-

patient effects are opposite on intensive care and drug use (columns 5–6 vs. 8–9, 

Table 6). A network incurs more surgery, radiation, and chemotherapy utilization 

by over 0.25 SD (0.087/0.34) while reducing target therapy utilization by 0.40 SD 

(0.151/0.38). In contrast, typical physician-patients use intensive care at a lower 

probability while increasing targeted therapy adoption and medications.15 

Neither physician status nor a network explains why typical physician-patients 

tend to replace intensive care with targeted therapy while enjoying better survival 

in the short term (180 or 365 days; see columns 2-3 vs. 5-6). This puzzle implies 

 
14 To check whether the network indicator among matched physician-patients is nearly random, we implement placebo 

tests. Columns 1-3 of Table A5 show a balance between matched physician-patients with versus without a network on those 
not precisely matched controls (e.g., age). This result confirms the validity of the exogeneity condition. Nevertheless, we 
include those controls and each physician-patient’s knowledge level in this matching scheme.   

15 We omit hormone therapy from our analysis because hormone therapy treats prostate and breast cancers. Given patient 
sex and cancer site, the data show almost no variation in doctor specialty, leaving the parameters of interest unidentified.  
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that the informational mechanism is the main driver for intensive care reduction 

and short-term survival improvement at the advanced stage. On the other hand, the 

total network effect is consistent with the impact of average physician-patients on 

coinsurance, palliative care, and three-year survival rates (columns 5-6). A robust 

professional tie with the attending doctor reduces coinsurance costs and palliative 

care utilization while enjoying better three-year survival by over 0.28 SD 

(0.071/0.252). These concurrent results suggest that the network-related channels 

correctly project differences in coinsurance cost, palliative care, and three-year 

survival between physicians and other patients.  

C3. Exchangeability between network and knowledge  

Although the average physician-patient effect is consistent with the impact of 

physician status or network-related mechanisms on some treatments, neither 

network nor physician status explicates why average physician-patients tend to 

replace radiation with targeted therapies while enjoying better short-term survival 

than other patients. This puzzle suggests that information is critical in determining 

treatment and survival. Using equation 1, we quantify the value of a network by 

information percentiles using the degree of informational exchangeability for a 

network, i.e., how many more medical knowledge percentiles are required to 

maintain the same survival or treatment intensity if the physician-patient lacks a 

robust professional tie with the attending doctor. Our parameter of interest is: 

𝑉𝑉𝑅𝑅𝑅𝑅 = −
𝑑𝑑𝐾𝐾
∆𝑅𝑅

�
fixing 𝛽𝛽𝐾𝐾𝐾𝐾

=
𝛽𝛽1𝑅𝑅 − 𝛽𝛽0𝑅𝑅
∂𝛽𝛽𝑅𝑅𝑅𝑅 ∂𝐾𝐾⁄ =

ρ + δ(𝐾𝐾)
𝑒𝑒′(𝐾𝐾) + 𝑅𝑅δ′(𝐾𝐾)

 

The value of a network can vary with the physician-patient's knowledge level 

(K∈[0,1]) and professional connection (R=0 or 1). We note that 𝑉𝑉1𝑅𝑅 equals 𝑉𝑉0𝑅𝑅 at 

a knowledge threshold 𝐾𝐾 = 𝑘𝑘∗, where δ′(𝑘𝑘∗) = 0.16 Deviating from the threshold, 

 
16 To see why, consider 𝑉𝑉1𝑅𝑅 = 𝑉𝑉0𝑅𝑅 or  ρ+δ(𝑅𝑅)

𝑒𝑒′(𝑅𝑅)+δ′(𝑅𝑅)
= ρ+δ(𝑅𝑅)

𝑒𝑒′(𝑅𝑅)
 given 𝐾𝐾 = 𝑘𝑘∗. The equality holds if and only if δ′(𝑘𝑘∗) = 0. 
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δ(𝐾𝐾) could be downward or upward sloping or nonlinear in K. To allow a flexible 

nonlinearity, we assume polynomials with orders (4,4) for δ(𝐾𝐾) and 𝑒𝑒(𝐾𝐾). If using 

orders (4,3) or (3,4), we find little shifts in the resulting pattern.  

Using a matched physician-patient sample, we implement fixed-effect 

regressions with two causal variables: network and knowledge. To derive sufficient 

variation in both variables, we combine two balanced samples: one balancing 

patients with versus without a network (as achieved in columns 1–3 of Table A5 in 

section C.2) and the other balancing by knowledge above versus below the median 

(columns 4–6). The balanced data by networks has 277 observations, with 214 

overlapping the balanced data by knowledge. The balanced data by knowledge adds 

80 extra admissions. Both samples precisely match physician-patients by doctor-

hospital and patient types as in scheme C. Table 5 illustrates the data structure, 

where the shaded areas indicate the included samples.  

Using the integrated samples, we estimate the fixed-effect models holding 

constant the same list covariates as in scheme C. Although the estimated 

coefficients are imprecise (Tables A6-1 and A6-2), as expected, due to limited 

support of continuous information, the estimated value of a network shows clear 

patterns. Figures 1 to 3 sketch the exchangeability given a network (𝑉𝑉1𝑅𝑅), as the 

case with no network is (𝑉𝑉0𝑅𝑅) are too noisy.  

We find a strikingly persistent pattern – lacking relevant knowledge of the cancer 

site makes a network equivalent to knowledge reduction. The value of a network is 

significantly negative for most outcomes whenever the knowledge level is at the 

bottom quartile or below. At the bottom quartile, the value of a network is between 

-11 and -6 ppts. At the bottom 1st percentile, it expands to -18 and -14 ppts. For 

patients who are professionally connected but less informed, the social tie is 

equivalent to losing 15 to 18 ppts of relevant knowledge of the cancer site for 

maintaining the same survival or treatment intensity. This result appears in survival 

rates and spending on examination (Figure 1), use of surgery/radiation therapy at 
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extensive and intensive margins (Figure 2), adoption of target drug therapy, and 

drug/tube feeding costs (Figure 3). Two exceptions are palliative care and 

chemotherapy, for which we did not obtain sufficient precision.  

In summary, when attending to a physician-patient professionally connected but 

lacking relevant knowledge, doctors may abuse the patient's trust to deviate from 

the procedure they would prescribe to a knowledgeable specialist-patient. This 

abuse could harm patient survival.  

5. Conclusion 

The agency problem in healthcare plays a leading role in understanding 

healthcare inequality. Researchers have found evidence consistent with the 

hypothesis of doctor-driven demand and the consequence of asymmetric 

information in treatment. However, less is known about how the doctor-patient 

relationship mitigates agency concerns. Some evidence has shown that social ties 

lessen agency issues in preventive care or cesarean section utilization. Outside 

those contexts, the relevance of the doctor-patient relationship in mitigating agency 

problems remains unknown. 

This paper begins with a benchmark of physicians treating physicians without 

separating the relational and informational mechanisms. We compare treatments 

and survival outcomes of comparable physician-patients and nonphysician-patients 

given the same advanced cancer, attending doctor, and hospital. By exploiting the 

within-doctor-hospital variation, we compare exactly matched patients and use rich 

controls to address patient selection and remove unobserved doctor quality. We find 

that physician-patients receive less intensive care, more medication, more targeted 

therapy, and fewer checkups, all of which cost less and improve survival.17  

 
17 Physicians' family members might receive similar benefits as physician-patients. This paper considers family members 

as nonphysician-patients, our results might understate the physician premiums from a broader perspective. 



28 
 

Physician-patients possess clinical knowledge and professional connections, 

potentially contributing to better care and higher survival than other patients. We 

extend the matching methods to assess the relative importance of the relational and 

informational advantages by exploiting the medical specialty variation among 

patients and doctors. With neither advantage, physician status induces attending 

doctors to prescribe different treatments (e.g., less surgery utilization; spending 

more on medications and less on tests) to physician-patients but do not prolong 

their lives relative to nonphysician-patients. In the data restricted to physician-

patients, a stronger doctor-patient relationship induces more intensive care and 

improves long-term survival, consistent with the average physician-patients’ 

effects. Nevertheless, neither physician status nor professional tie explains why 

average physician-patients tend to replace radiation with targeted therapies and 

enjoy better survival in the short term. This puzzle leaves the informational 

mechanism as a leading explanation for the result.  

To confirm, we estimate the value of a professional tie relative to medical 

knowledge using more restrictive models. A professional connection equates to a 

knowledge reduction if physician-patients are less informed. A professional tie 

tends to lower the physician’s survival as they receive treatments differing from 

those prescribed to specialist patients possessing relevant medical knowledge and 

experience about their diagnosed cancer. 

The revealed mechanisms are consistent with a framework in which doctors can 

induce demand to benefit their self-interest. A stronger bond between patients and 

doctors builds trust, which doctors might exploit to induce demand if patients are 

less informed, as posited by the classical doctor-driven demand hypothesis.  

These findings offer lessons for the labor markets of expert services (e.g., real 

estate agencies, used car dealerships, and initial public offering underwriting). The 

key to resolving agency problems is to close the information gap between principals 

and agents. Professional connections intensity agency issues if consumers are less 
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informed. Being more informed increases the chance of belonging to a network, 

which further induces more information. Professional ties can benefit expert 

consumers, but only long-term when the network provides insider information. 

Essentially, relational advantages alone cannot eliminate conflicting interests. 

Although our analytical approach is novel, our study has three limitations. First, 

it assumes monotonicity of the relational and informational advantages. In other 

words, the comparison made by distinguishing doctor-patient pairs by medical 

specialties is the same as the one by separating physician-patients from 

nonphysicians. However, professional connections via medical association 

networks might differ from social ties via occupations in affecting treatment and 

survival impacts. Second, we assume that observables fully capture physician-

patients' selection in professional networks. If the selection is also based on 

unobservable incentives independent of those observed, we overstate the relational 

benefits and understate the informational advantages due to reverse causation; 

physician-patients who prefer intensive care may choose a doctor with whom there 

is a relational advantage to receive favorable treatments. 18  

Lastly, the matched sample size is small due to the rare overlap between 

physician-patients and nonphysicians and among physician-patients by advantage. 

Given a modest set of controls for patient types (footnote 4), nearest-neighbor 

matching might not eliminate bias. However, it minimizes bias after precisely 

matching patients by doctor-hospital. More data availability would enhance our 

understanding of how networking-induced information impacts patient survival. 

Our future work aims to increase observations and relax the monotonicity 

assumption. 

 
18 This limitation is the same one faced by Reuter (2006), who attempted to evaluate favoritism in allocating initial public 

offering stocks (IPSs) across mutual fund families. He identifies the impact of this favoritism by controlling the level of 
private information using a proxy that varies across investor-underwriter relationships. However, the observed favoritism 
might result from selection issues regarding mutual fund managers' incentive to allocate underpriced IPOs strategically 
(Gaspar, Massa, and Matos, 2006).  
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TABLE 1—SUMMARY STATISTICS OF HOSPITAL ADMISSIONS FOR END-STAGE CANCER PATIENTS 
 

End-stage cancer at the first diagnosis  
Nonphysician Physicians minus  

Variable Mean Nonphysicians p-value 
Patient attributes: 

   

Male 0.50 0.35 0.000 

Age at the first diagnosis 57.76 1.96 0.026 

Log income at the first diagnosis 10.05 0.89 0.000 

Log previous hospital spending 4.09 -0.72 0.015 

Preexisting clinical relationship with attending 0.07 -0.01 0.221 

Doctor attributes: 
   

Male 0.88 0.03 0.049 

Experience at admission 12.77 2.06 0.000 

Selectivity at first diagnosis 0.0022 0.0017 0.000 

Practice in multiple hospitals 0.43 -0.07 0.003 

Specialty unrelating to cancer treatments 0.08 -0.02 0.062 

Hospital types: 
   

Teaching  0.21 0.12 0.000 

Veteran 0.16 0.13 0.000 

Private 0.61 -0.14 0.000 

Acute inpatient stays (days) 7.89 -0.81 0.023 

Diagnosis-to-treatment interval 122.66 -5.59 0.072 

Cancer care and therapy: 
   

Surgery  0.66 -0.05 0.073 

Chemotherapy  0.80 -0.04 0.070 

Radiation therapy  0.32 -0.01 0.652 

Targeted therapy 0.11 0.05 0.029 

Palliative care  0.15 -0.04 0.030 

Log spending: 
   

Total NHI cost  10.50 0.03 0.552 

Coinsurance 0.66 0.16 0.010 

NHI drugs 8.67 -0.07 0.467 

Surgery   2.29 0.06 0.617 

Tube feeding  0.56 -0.16 0.003 

Radiation therapy  7.10 -0.33 0.001 

Examination  6.84 -0.04 0.758 

Survival: 
   

Lived 180 days+ 0.93 0.01 0.321 

Lived 365 days+ 0.81 0.07 0.000 

Lived 1095 days+ 0.55 0.10 0.004 

Notes: We include 1,123,377 hospital admissions in the NHI database associated with end-stage cancer 
diagnoses for first timers during 2004-2016, where 2,454 admissions are for 611 physician-patients and 
1,120,923 entries for 279,399 nonphysician-patients. We cluster standard errors at the patient level in 
calculating the p-value.  



 

TABLE 2—BALANCE OF A SELECTION OF DOCTOR ATTRIBUTES AND PATIENT CONDITIONS AFTER MATCHING PATIENT TYPES 

 A) Exact match for patient types  B) Exact match for patient types 

Predetermined variables within hospital  within doctor-hospital 
not matched on Std. mean diff. t-test KS-test  Std. mean diff. t-test KS-test 

Doctor gender 0.14 0.88 0.00  0.00 1.00 1.00 
Doctor experience at admission 0.30 0.02 0.10  -0.04 0.92 1.00 
Doctor selectivity at first diagnosis 0.15 0.49 0.67  -0.04 0.90 0.97 
Doctor practice in multiple hospitals -0.14 0.26 0.00  0.00 1.00 1.00 
Patients log prior spending on drugs  -0.01 0.87 1.00  -0.01 0.99 1.00 
Patient's pre-trend in hospital cost -0.07 0.55 1.00   -0.01 0.95 1.00 
Number/percent of admissions 2,811 0.26%   552 0.05%  
Number of physician-patients   98    31 
Number of all patients   663    100 
Number of hospitals   19    13 
Number of attending doctors   441    28 
Number of hospital-doctor pairs   443    28 
Admission counts by cancer site:        
Lip, oral cavity, or pharynx 128    45 
Digestive organs and peritoneum 1,307    238 
Respiratory system and chest cavity 115    23 
Bones, skins, and connective and other subcutaneous tissues 472    143 
Breast, reproductive, and urinary organs 305    67 
Others (e.g., eyes, central nerves, endocrine glands, leukemias) 484       36 

Note: We report the p-values of paired t-tests and Kolmogorov-Smirnov KS-tests for each matching scheme. "Pre-trend in hospital cost" is the 3-year pre-diagnosis trend in inpatient spending. 
Both matching procedures include a comprehensive list of "patient types," including gender, 17 cancer sites, 2-year age bins, 4-year admission period, six regions of residence, hospital spending 
quintile four years before diagnosis, income quintile in the year before the first diagnosis, and an indicator for having a preexisting clinical relationship with the attending doctor three years 
before diagnosis. We match admissions precisely by the patient types within hospitals in scheme (A) and doctor-hospital in scheme (B).  
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TABLE 3—MATCHING ESTIMATED EFFECTS OF A PHYSICIAN-PATIENT ON TREATMENT CHOICE, VOLUME, AND SURVIVAL 

 (1) (2) (3) (4)   (5) (6) (7)  
 Within A) Exact match by patient types  B) Exact match by patient types 

 hospital within hospital  within doctor-hospital 

  SD SD Coef. 
Std. 
Err.     SD Coef. 

Std. 
Err.   

Acute inpatient stays (days) 12.1 9.6 -1.9 0.4 *** 
 

6.2 -1.5 0.4 *** 
Diagnosis-to-treatment (days)  95.7 89.0 2.7 4.7 

  
75.6 1.3 7.1 

 

Cancer therapy: 
          

Surgery  0.47 0.26 0.007 0.008 
  

0.20 -0.083 0.02 *** 
Radiation therapy  0.46 0.40 0.016 0.013 

  
0.33 -0.071 0.027 *** 

Chemotherapy  0.39 0.28 0.034 0.010 *** 
 

0.20 -0.007 0.018 
 

Targeted therapy 0.31 0.27 0.109 0.009 *** 
 

0.28 0.167 0.024 *** 
Palliative care  0.35 0.23 -0.024 0.007 *** 

 
0.16 -0.027 0.013 ** 

Log spending: 
          

Total NHI cost  1.52 1.91 -0.081 0.161 
  

1.67 -0.055 0.179 
 

Coinsurance 2.20 1.66 -0.193 0.113 * 
 

1.07 -0.226 0.100 *** 
NHI drugs 2.15 2.31 0.240 0.157 

  
1.80 0.652 0.165 *** 

Surgery   4.21 3.89 -0.712 0.248 *** 
 

2.87 -1.159 0.275 *** 
Tube feeding  2.01 1.54 -0.277 0.050 *** 

 
0.39 -0.031 0.022 

 

Radiation therapy  2.77 2.58 -0.307 0.153 ** 
 

2.00 0.128 0.185 
 

Examination  2.92 2.91 -0.480 0.170 *** 
 

2.29 -0.943 0.211 *** 
Survival: 

          

Lived 180 days+ 0.25 0.18 0.008 0.006 
  

0.11 0.025 0.009 *** 
Lived 365 days+ 0.39 0.31 0.045 0.010 *** 

 
0.19 0.093 0.015 *** 

Lived 1095 days+ 0.49 0.39 0.134 0.015 *** 
 

0.20 0.071 0.021 *** 
Number of admissions: 1100301 2811 

    
552 

   

Lived 180 days+ 1078870 2785 
    

531 
   

Lived 365 days+ 1030972 2785 
    

531 
   

Lived 1095 days+ 816817 1926         346       

 Note: "Pre-trend in hospital cost" is the 3-year pre-diagnosis trend in inpatient spending. Both matching procedures cover a 
comprehensive list of patient types, including gender, 17 cancer sites, 2-year age bins, 4-year admission period, six regions of residence, 
hospital spending quintile four years before diagnosis, income quintile in the year before the first diagnosis, and an indicator for having 
a preexisting clinical relationship with the attending doctor three years before diagnosis. We match admissions precisely by the patient 
types within hospitals in scheme (A) and doctor-hospital (B). The standard deviations (SD) in the first column report information after 
removing hospital-fixed effects. The SD in scheme-A presents information after removing the fixed effects of patient types and 4-year 
admission periods, in addition to hospital fixed effects. The SD in scheme (B) further removes doctor-fixed effects. We cluster standard 
errors at the patient level. * p<.1, **p<.05, *** p<.01.   



 

TABLE 4 —MAPPING SPECIALISTS TO MEDICAL KNOWLEDGE AND PROFESSIONAL NETWORKS 

    

(1) 
Internal 

medicine 

(2) 
Nuclear 

medicine 

(3) 
Radiation 
oncology 

(4) 
OB/GYN 

(5) 
Surgery 

(6) 
Urology 

(7) 
Orthopedics 

(8) 
Otorhinolaryngology 

(9) 
Dermatology 

(10) 
Ophthalmology 

ICD-O-3 code Cancer site (I) Medical oncology (I) & (II) (II) Surgical oncology Not listed by TOS 
C74-C75 Adrenal or other endocrine glands 0.033 0.694 0.019 0.011 0.103 0.013 0.008 0.084 0.009 0.012 

C70-C72, C80 Brain/nerves or unknown 0.118 0.025 0.273 0.230 0.208 0.053 0.023 0.131 0.030 0.016 
C51-C58 Female genital organs 0.029 0.011 0.091 0.703 0.024 0.022 0.010 0.008 0.009 0.007 

C50 Breast 0.084 0.004 0.190 0.015 0.490 0.008 0.018 0.005 0.006 0.005 
C64-C68 Urinary tract 0.073 0.029 0.119 0.023 0.029 0.883 0.025 0.013 0.013 0.013 
C40-C41 Bone or articular cartilage 0.552   0.212 0.112 0.101 0.058 0.294 0.106     
C00-C14 Lip/pharynx or oral cavity 0.053 0.005 0.166 0.004 0.033 0.006 0.006 0.333 0.005 0.004 

C44 Skin 0.115   0.146 0.046 0.220 0.073 0.074 0.129 0.576 0.114 
C69 Eye 0.328       0.214   0.161 0.277   1.000 

C60-C63 Male genital organs 0.080   0.134 0.064 0.050 0.916 0.049 0.026 0.058 0.034 
C47, C49 Malignant neoplasm of peripheral 

nerves and autonomic nervous systems 
or other connective and soft tissues 

0.289   0.229 0.170 0.146 0.092 0.234 0.093 0.092   

C30-C39 Respiratory and intrathoracic organs 0.218 0.007 0.200 0.014 0.101 0.016 0.016 0.096 0.014 0.007 
C15, C16, C48 Esophagus, intestinal tract, 

retroperitoneum, or peritoneum 
0.098 0.015 0.208 0.017 0.191 0.015 0.016 0.012 0.004 0.004 

* Leukemia 0.091 0.013 0.218 0.006 0.011 0.009 0.007 0.018 0.011 0.008 
                        

Specialists attending almost no cancer cases or in charge 
of pre-treatment diagnosis or post-treatment 
reconstruction (relative knowledge level = 0):  

Pathology    Plastic and reconstruction surgery Others 
 
 
  

  Neurosurgery 
Diagnostic Radiology 

Note: This table summarizes the taxonomy classification associated with specialists based on their specialties and hospital departments. We derive the knowledge index using the method illustrated in section 4A. 
Empty cells indicate absolute zeros. Following Taiwan's Cancer Registry Annual Reports (downloadable from www.hpa.gov.tw), we assign each cancer site to ICD-O-3 codes. * Leukemia's coding is M95903-
M99933, except M99903. Each doctor might have multiple specialties and work in multiple departments. (1) "Internal medicine" covers internists and doctors working in the following departments: pediatrics, 
gastroenterology, cardiovascular medicine, thoracic medicine or critical care, nephrology, rheumatology, endocrinology, infectious diseases, geriatrics, home care, tuberculosis, and dialysis. (3) "Radiation 
oncology" includes radiation oncologists and doctors in hematology-oncology departments. (5) "Surgery" covers general surgeons and doctors in the following departments: pediatric surgery, rectal surgery, 
cardiovascular surgery, thoracic surgery, digestive surgery, and oral/maxillofacial surgery. "Others" are specialists outside of cancer care, including ER, neurology, anesthesiology, rehabilitation, psychiatry, family 
medicine, and occupational medicine. Also, we include doctors in neonatology or pain-medicine departments in this category. Our data show no physician-patients who seek cancer treatments from a pathologist, 
dermatologist, or ophthalmologist. Among data from physician-patients, only three inpatient entries have a professional tie with their attending doctors specializing in "Others." 
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TABLE 5. CONSTRUCTING THE MATCHED SAMPLE OF PHYSICIAN-PATIENTS FOR ESTIMATING THE 
INFORMATIONAL EXCHANGEABILITY FOR A NETWORK 

  All physician-patients  

    
Not 

matched 

Matched subsample 
for patients with 
versus without a 

network Total 

All 
physician-

patients 

Not matched 2,656 63 2,719 

     

Matched subsample for patients 
with knowledge above versus 
below the 50th percentile  80 214 294 

  Total 2,736 277 3,013 
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TABLE 6. MATCHING ESTIMATES: THE PHYSICIAN STATUS AND TOTAL RELATIONAL EFFECTS ON OUTCOMES 

 (1) (2) (3) 
  (4) (5) (6) 

 
(7) (8) (9) 

 

 Scheme B: Matching nonphysician-patients  
 

Scheme C: Matching among  Baseline Scheme B:  

 
to physician-patients with no advantage 

 
physician-patients 

 
The average  

  Physician status effect 
  Total relational effect 

 
physician-patient effect 

 
(β) 

  
ρ + Ε[δ(Κ)] 

 
E[β(R,K)] 

  SD Coef. Std. Err.     SD Coef. Std. Err.   SD Coef. Std. Err.   

Acute inpatient stays (days) 3.7 -1.3 0.5 ** 
 

5.8 -2.5 2.2 
 

6.2 -1.5 0.4 *** 

Diagnosis-to-treatment (days) 65.9 -2.3 11.6 
  

86.7 5.7 11.0 
 

75.6 1.3 7.1 
 

Cancer therapy: 
             

Surgery  0.23 -0.088 0.037 ** 
 

0.34 0.087 0.043 ** 0.20 -0.083 0.018 *** 

Radiation  0.36 0.011 0.048 
  

0.31 0.194 0.058 *** 0.33 -0.071 0.027 *** 

Chemotherapy  0.16 0.094 0.023 *** 
 

0.22 0.253 0.041 *** 0.20 -0.007 0.018 
 

Targeted 0.10 -0.060 0.016 *** 
 

0.38 -0.151 0.044 *** 0.28 0.167 0.024 *** 

Palliative care  0.12 0.060 0.016 *** 
 

0.19 -0.249 0.026 *** 0.16 -0.027 0.013 ** 

Log spending: 
             

Total NHI cost  1.67 0.028 0.286 
  

1.32 -0.408 0.269 
 

1.67 -0.055 0.179 
 

Coinsurance 1.08 -0.165 0.192 
  

1.70 -0.580 0.283 ** 1.07 -0.226 0.100 *** 

NHI drugs 1.73 0.770 0.270 *** 
 

1.45 -0.270 0.262 
 

1.80 0.652 0.165 *** 

Surgery   3.29 -1.512 0.459 *** 
 

2.81 -0.379 0.654 
 

2.87 -1.159 0.275 *** 

Tube feeding  0.00 NA 
   

0.76 -0.323 0.436 
 

0.39 -0.031 0.022 
 

Radiation therapy  1.81 0.771 0.285 *** 
 

2.13 -0.510 0.378 
 

2.00 0.128 0.185 
 

Examination  2.31 -1.502 0.315 *** 
 

2.35 0.057 0.582 
 

2.29 -0.943 0.211 *** 

Survival: 
             

Lived 180 days+ +0.00 +0.000 0.000 
  

0.15 0.001 0.029 
 

0.11 0.025 0.009 *** 

Lived 365 days+ +0.00 +0.000 0.000 
  

0.22 -0.008 0.040 
 

0.19 0.093 0.015 *** 

Lived 1095 days+ 0.20 -0.007 0.034     0.28 0.252 0.077 *** 0.20 0.071 0.021 *** 

The number of admissions: 
 

217 
    

277 
   

552 
  

Lived 180 days+ 
 

180 
    

244 
   

531 
  

Lived 365 days+ 
 

180 
    

237 
   

531 
  

Lived 1095 days+   146         178       346     

 Note: Columns 1–3 use the matched sample where we compare nonphysician-patients to physician-patients without any specific advantages. As in scheme-B of 
Table 3, we precisely match hospital entries on doctors, hospitals, and a comprehensive list of patient types (including gender, 17 cancer sites, 2-year age bins, 4-
year admission period, six regions of residence, hospital spending quintile, four years before diagnosis, income quintile in the year before the first diagnosis, and an 
indicator for having a preexisting clinical relationship with the attending doctor three years before diagnosis). The matched sample exhibits a near-perfect balance 
similar to panel B of Table 2 but is not shown in the tables. Columns 4–6 use the matched sample to compare physician-patients with versus without a robust 
professional tie with the attending doctor. Here we precisely match hospital entries on doctors, hospitals, and the patient's sex, cancer site, and hospital spending 
tercile four years before diagnosis while controlling for the doctor's years of experience and the patient's two-year age bins, inpatient spending growth tercile four 
years before diagnosis, and income tercile in the year before the first diagnosis. See Table 6 for the balance check result. Columns 7–9 are from Table 3's columns 
5–7. The standard deviations (SD) represent information given the matching scheme after removing doctor-hospital fixed effects and patient types. We report the 
clustered standard errors (SE) at the patient level. * p<.1, **p<.05, *** p<.01. 
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FIGURE 1. INFORMATIONAL EXCHANGEABILITY FOR A SOLID TIE WITH THE ATTENDING DOCTOR, BY PATIENT KNOWLEDGE 

PERCENTILE – PATIENT SURVIVAL AND EXAMINATION COST  

Note:  The estimated degrees of exchangeability have wide confidence intervals at the median knowledge for three-year 
survival and log examination cost, which we omit for ease of exposition. We identify the parameter using the regression 
results and derive its standard error using Delta methods; see our estimation results in Tables A7-1 to A7-4. We skip the 
estimates with wide confidence intervals that go off-chart, especially for survival or medical spending outcomes at the upper 
range of knowledge levels.
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FIGURE 2. INFORMATIONAL EXCHANGEABILITY FOR A SOLID TIE WITH THE ATTENDING DOCTOR, BY PATIENT KNOWLEDGE 

PERCENTILE – INTENSIVE CARE AT EXTERNAL AND INTERNAL MARGINS 

Note:  The estimated degree of exchangeability has wide confidence intervals at the median knowledge level for log surgery 
spending and radiation therapy costs, which we omit for ease of exposition. See the note of figure 1.
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FIGURE 3. INFORMATIONAL EXCHANGEABILITY FOR A SOLID TIE WITH THE ATTENDING DOCTOR, BY PATIENT KNOWLEDGE 

PERCENTILE – DRUG USE AND OTHER COSTS 

Note:  The estimated degree of exchangeability has wide confidence intervals at the median knowledge level for log NHI 
drug and tube feeding costs, which we omit for ease of exposition. See the note of figure 1.
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Appendix 

TABLE A1— SUMMARY STATISTICS OF CANCER DIAGNOSIS, PATIENT ATTRIBUTES, TREATMENT CHOICE, AND SURVIVAL, INCLUDING THOSE NON-HOSPITALIZED 

 Full sample  The advanced stage at first diagnosis sample 
  Physicians     Physicians   

 Nonphysician minus p- Number of   Nonphysician minus p- Number of  
Variable mean nonphysicians value diagnoses   Mean nonphysicians value diagnoses 
Diagnosis: 

         

Advanced stage at first diagnosis 0.30 0.03 0.00   1,216,565  
     

Patient attributes: 
         

Male 0.53 0.35 0.00   1,216,565  
 

0.56 0.34 0.00      364,060  
Age at the first diagnosis 61.82 3.17 0.00   1,216,565  

 
62.29 3.56 0.00      364,060  

Log income at the first diagnosis 10.02 0.74 0.00   1,216,565  
 

10.02 0.72 0.00      364,060  
Log previous hospital spending 4.90 -0.30 0.01   1,216,565  

 
4.63 -0.70 0.00      364,060  

Cancer care and therapy: 
         

Surgery  0.59 0.04 0.00   1,216,565  
 

0.59 -0.04 0.04      364,060  
Chemotherapy  0.39 -0.08 0.00   1,216,565  

 
0.54 -0.07 0.00      364,060  

Radiation  0.24 -0.05 0.00   1,216,565  
 

0.26 -0.02 0.24      364,060  
Hormone  0.13 0.01 0.16   1,216,565  

 
0.15 0.05 0.00      364,060  

Palliative care  0.13 -0.04 0.00   1,216,565  
 

0.13 -0.04 0.00      364,060  
No hospital care  0.12 -0.01 0.43   1,216,565  

 
0.09 0.00 0.80      364,060  

Targeted  0.05 0.01 0.08   1,216,565  
 

0.07 0.02 0.03      364,060  
Immunotherapy 0.0074 0.0011 0.56   1,216,565  

 
0.0144 0.0048 0.33      364,060  

Stem cell  0.0014 0.0007 0.47   1,216,565  
 

0.0044 0.0007 0.78      364,060  
Chinese medicine 0.0005 -0.0005 0.00   1,216,565  

 
0.0007 -0.0007 0.00      364,060  

Survival: 
         

Lived 180 days+ 0.84 0.04 0.00   1,160,075  
 

0.86 0.04 0.00      347,437  
Lived 365 days+ 0.75 0.07 0.00   1,104,203  

 
0.77 0.08 0.00      330,819  

Lived 1095 days+ 0.58 0.10 0.00      880,428  
 

0.59 0.12 0.00      264,977  
Died in hospital 0.23 0.03 0.00   1,216,565    0.24 0.04 0.01      364,060  

Notes: After excluding 138 patients and 170 diagnoses due to missing income information, we have 1,216,565 cancer diagnoses among the 1,037,216 patients (including 
1,987 medical doctors) recorded in Taiwan's NHI database from 2004 to 2016. We identify "end-stage cancer" using one of the following three conditions: (1) the cancer is 
invasive (i.e., the 5th digit of HISTBET equals 3), (2) the patient has multiple cancer sites, or (3) the cells are poorly differentiated or undifferentiated anaplastic grade (i.e., 
GRADE equals 3 or 4; for colon, rectum, or ovary cancer, any GRADE value except B). "Previous hospital spending" is limited to NHI hospital items used three years 
before diagnosis. Mortality data have fewer observations since we only obtain Death Registry records up to December 2016. We cluster standard errors at the patient level. 
In the end-stage sample, we include 364,060 cancer diagnoses among the 364,060 patients (including 780 medical doctors) recorded in Taiwan's NHI database during the 
same data period. Source: Author calculations using Taiwan's NHI Database. 
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TABLE A2—COMPARING ESTIMATES USING FIXED-EFFECT VERSUS MATCHING METHODS, USING THE FULLY MATCHED 
SAMPLE 

 (1) (2) (3)  (4)  (5) (6)  
 Scheme B: Exact match by patient types within doctor-hospital 

  Fixed-effect model  Matching method 

  SD Coef. 
Std. 
Err.   

Adj-
R2   Coef. 

Std. 
Err.   

Acute inpatient stays (days) 6.2 -1.5 0.5 *** 0.11 
 

-1.5 0.4 *** 

Diagnosis-to-treatment (days) 75.6 2.8 10.2 
 

0.28 
 

1.3 7.1 
 

Cancer therapy: 
         

Surgery  0.20 -0.087 0.057 
 

0.78 
 

-0.083 0.02 *** 

Radiation  0.33 -0.080 0.082 
 

0.53 
 

-0.071 0.027 *** 

Chemotherapy  0.20 0.005 0.045 
 

0.33 
 

-0.007 0.018 
 

Targeted 0.28 0.147 0.082 * 0.47 
 

0.167 0.024 *** 

Palliative care  0.16 -0.019 0.035 
 

0.41 
 

-0.027 0.013 ** 

Log spending: 
         

Total NHI cost  1.67 -0.070 0.117 
 

0.48 
 

-0.055 0.179 
 

Coinsurance 1.07 -0.241 0.097 *** 0.09 
 

-0.226 0.100 *** 

NHI drugs 1.80 0.633 0.253 *** 0.52 
 

0.652 0.165 *** 

Surgery   2.87 -1.259 0.342 *** 0.27 
 

-1.159 0.275 *** 

Tube feeding  0.39 -0.024 0.032 
 

0.03 
 

-0.031 0.022 
 

Radiation therapy  2.00 0.165 0.204 
 

0.50 
 

0.128 0.185 
 

Examination  2.29 -1.043 0.243 *** 0.50 
 

-0.943 0.211 *** 

Survival: 
         

Lived 180 days+ 0.11 NA 
  

0.07 
 

0.025 0.009 *** 

Lived 365 days+ 0.19 0.086 0.039 *** 0.35 
 

0.093 0.015 *** 

Lived 1095 days+ 0.20 0.078 0.060   0.73   0.071 0.021 *** 

 Note: N=552 except for survival outcomes with fewer observations (see table 3). Both matching and fixed-effect 
models include doctor-hospital fixed effects and patient types, including gender, 17 cancer sites, 2-year age bins, 
4-year admission period, six regions of residence, hospital spending quintile four years before diagnosis, income 
quintile in the year before the first diagnosis, and an indicator for having a preexisting clinical relationship with the 
attending doctor three years before diagnosis. The dummy for living 180 days+ has a sample mean of about 7 
percent, so we estimate a logistic fixed-effect model but cannot get convergence. The standard deviations (SD) in 
column 1 report the information after removing doctor-hospital fixed effects and patient types. We report the 
clustered standard errors at the patient level. * p<.1, **p<.05, *** p<.01. 
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TABLE A2-1—FIXED-EFFECT MODELS: EFFECTS OF A PHYSICIAN-PATIENT ON TREATMENT AND SURVIVAL 

 (1) (2) (3)  (4)  (5) (6) (7)  (8)  (9) (10)  (11) 
 Chosen hospitals (N=1,100,301)  Chosen doctors only (N=622,226)  Fully matched sample (N=522) 

  SD Coef. SE   
Adj-
R2   SD Coef. SE   

Adj-
R2   Coef. SE   

Adj-
R2 

Acute inpatient stays (days) 12.1 -1.7 0.33 *** 0.17 
 

11.3 -1.74 0.33 *** 0.15 
 

-1.5 0.51 *** 0.11 

Diagnosis-to-treatment  95.7 -6.1 2.90 ** 0.10 
 

94.3 -5.75 2.87 ** 0.09 
 

2.8 10.19 
 

0.28 

Cancer therapy: 
                

Surgery  0.47 0.012 0.020 
 

0.53 
 

0.46 0.012 0.020 
 

0.51 
 

-0.087 0.06 
 

0.78 

Radiation   0.46 0.003 0.024 
 

0.26 
 

0.46 0.002 0.024 
 

0.25 
 

-0.080 0.08 
 

0.53 

Chemotherapy  0.39 -0.001 0.018 
 

0.33 
 

0.37 0.001 0.018 
 

0.31 
 

0.005 0.04 
 

0.33 

Targeted 0.31 0.037 0.020 * 0.21 
 

0.33 0.036 0.020 * 0.22 
 

0.147 0.08 * 0.47 

Palliative care  0.35 -0.049 0.018 *** 0.14 
 

0.35 -0.050 0.018 *** 0.11 
 

-0.019 0.04 
 

0.41 

Log spending: 
                

Total NHI cost  1.52 -0.125 0.044 *** 0.34 
 

1.69 -0.132 0.044 *** 0.37 
 

-0.070 0.12 
 

0.48 

Coinsurance 2.20 0.024 0.051 
 

0.19 
 

1.95 0.034 0.051 
 

0.11 
 

-0.241 0.10 ** 0.09 

NHI drugs 2.15 -0.155 0.082 * 0.30 
 

2.23 -0.149 0.081 * 0.33 
 

0.633 0.25 ** 0.52 

Surgery   4.21 -0.097 0.100 
 

0.35 
 

4.17 -0.116 0.100 
 

0.35 
 

-1.259 0.34 *** 0.27 

Tube feeding  2.01 -0.214 0.047 *** 0.21 
 

1.81 -0.214 0.046 *** 0.15 
 

-0.024 0.03 
 

0.03 

Radiation therapy  2.77 -0.440 0.087 *** 0.26 
 

2.72 -0.438 0.087 *** 0.29 
 

0.165 0.20 
 

0.50 

Examination  2.92 -0.420 0.108 *** 0.34 
 

3.00 -0.434 0.107 *** 0.34 
 

-1.043 0.24 *** 0.50 

Survival: 
                

Lived 365 days+ 0.39 0.081 0.016 *** 0.20 
 

0.38 0.082 0.016 *** 0.16 
 

0.086 0.04 ** 0.35 

Lived 1095 days+ 0.49 0.118 0.031 *** 0.22   0.49 0.118 0.030 *** 0.20   0.078 0.06   0.73 

Note: The "chosen-hospital" sample includes admissions in physician-patients' hospitals. The "chosen-doctor" sample covers entries attended by doctors whom physician-
patients see. We derive the "fully matched sample" using the matching scheme (B) in Table 3. All specifications control for the complete set of covariates of the scheme (B) 
(i.e., doctor-hospital fixed effects and patient types, including gender, 17 cancer sites, 2-year age bins, 4-year admission period, six regions of residence, hospital spending 
quintile four years before diagnosis, income quintile in the year before the first diagnosis, and an indicator for having a preexisting clinical relationship with the attending 
doctor three years before diagnosis). We add the complete set of dummies for 5-year doctor experience bins in the first two samples. We report the clustered standard errors 
at the patient level. * p<.1, **p<.05, *** p<.01. The probability of living 180 days+ is about 93 percent, so we estimate a logistic fixed-effect model but cannot reach 
convergence. 
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TABLE A2-2. FIXED-EFFECT ESTIMATES USING DATA FROM ADMISSIONS IN HOSPITALS CHOSEN BY PHYSICIAN-PATIENTS 

 a) Within doctor-hospital  
b) Within the doctor, within the 

hospital  c) Within the hospital 

  Coef. SE p 
Adj-
R2   Coef. SE p 

Adj-
R2   Coef. SE p Adj-R2 

Acute inpatient stays 
(days) 

-1.74 0.33 0.00 0.18 
 

-1.76 0.33 0.00 0.17 
 

-1.81 0.34 0.00 0.08 

Diagnosis-to-treatment  -6.09 2.89 0.03 0.10 
 

-5.84 2.89 0.04 0.09 
 

-3.75 2.95 0.20 0.03 
Cancer therapy: 

              

Surgery  0.012 0.020 0.55 0.53 
 

0.012 0.020 0.53 0.53 
 

0.006 0.020 0.77 0.47 
Radiation   0.003 0.024 0.92 0.26 

 
0.004 0.024 0.89 0.25 

 
-0.003 0.025 0.91 0.21 

Chemotherapy  -0.001 0.018 0.96 0.33 
 

0.000 0.018 0.98 0.32 
 

0.006 0.020 0.76 0.23 
Targeted 0.038 0.020 0.06 0.21 

 
0.040 0.020 0.05 0.21 

 
0.043 0.020 0.03 0.17 

Palliative care  -0.049 0.019 0.01 0.14 
 

-0.045 0.019 0.02 0.13 
 

-0.043 0.019 0.02 0.07 
Log spending: 

              

Total NHI cost  -0.129 0.044 0.00 0.34 
 

-0.130 0.044 0.00 0.34 
 

-0.141 0.048 0.00 0.17 
Coinsurance 0.027 0.051 0.60 0.19 

 
0.025 0.051 0.62 0.18 

 
0.025 0.057 0.65 0.05 

Drugs -0.161 0.082 0.05 0.30 
 

-0.162 0.082 0.05 0.30 
 

-0.117 0.088 0.19 0.12 
Surgery   -0.095 0.100 0.34 0.35 

 
-0.112 0.102 0.27 0.34 

 
-0.216 0.109 0.05 0.09 

Tube feeding  -0.213 0.047 0.00 0.21 
 

-0.214 0.048 0.00 0.21 
 

-0.231 0.051 0.00 0.10 
Radiation therapy  -0.445 0.087 0.00 0.26 

 
-0.428 0.087 0.00 0.25 

 
-0.444 0.094 0.00 0.12 

Examination  -0.425 0.108 0.00 0.34 
 

-0.418 0.106 0.00 0.34 
 

-0.393 0.122 0.00 0.18 
Survival: 

              

Lived 180 days+ 0.015 0.009 0.08 0.12 
 

0.015 0.009 0.08 0.12 
 

0.017 0.009 0.06 0.06 
Lived 365 days+ 0.082 0.016 0.00 0.20 

 
0.081 0.016 0.00 0.19 

 
0.083 0.017 0.00 0.11 

Lived 1095 days+ 0.119 0.031 0.00 0.22   0.119 0.031 0.00 0.22   0.117 0.033 0.00 0.15 

Note: In all specifications, we control for the complete set of dummies for 5-year doctor experience bins and the complete set of covariates of the 
scheme-B (i.e., doctor-hospital fixed effects, and patient types, including gender, 17 cancer sites, 2-year age bins, 4-year admission period, six regions 
of residence, hospital spending quintile four years before diagnosis, income quintile in the year before the first diagnosis, and an indicator for having 
a preexisting clinical relationship with the attending doctor three years before diagnosis). We report the clustered standard errors (SE) at the patient 
level. The survival outcomes have fewer observations than other outcome variables (see table). 

  



18  

TABLE A3. EXAMPLE OF QUANTIFYING A DOCTOR'S MEDICAL KNOWLEDGE OF A CANCER SITE USING RELATIVE VOLUME BY SPECIALTY AND HOSPITAL DEPARTMENT 

ICD-O-
Code 

Cancer 
site First/main specialty Hospital department 

The average 
number of 

admissions per 
doctor (1) 

Relative 
knowledge of the 

cancer site  
(2) = (1)/342.3 

Average knowledge 
over departments 
per specialty (3) 

C50 Breast Surgery Surgery 342.3 1.00 0.490 

  Internal medicine Hematology oncology 329.0 0.96 0.084 

  Oncology Internal medicine 140.8 0.41 0.190 

  Surgery Gastrointestinal surgery 100.8 0.29  

  Surgery Hematology oncology 80.2 0.23  

  Oncology Hematology oncology 77.5 0.23  

  OB/GYN Hematology oncology 70.8 0.21 0.015 

  Orthopedics Surgery 68.0 0.20  

  Internal medicine Surgery 66.7 0.19  

  Surgery Internal medicine 57.9 0.17  

  Surgery Rectal surgery 53.7 0.16  

  Oncology Radiation oncology 42.6 0.12  

  OB/GYN Surgery 41.3 0.12  

  Oncology Radiology 41.0 0.12  

  Oncology Surgery 36.5 0.11  

  Surgery Radiation oncology 22.2 0.06  

  Surgery Plastic surgery 15.2 0.04  

  Urology Surgery 9.7 0.03 0.008 

  Surgery Radiology 7.7 0.02  

  Internal medicine Internal medicine 7.1 0.02  

  Orthopedics Plastic surgery 6.8 0.02 0.018 

  OB/GYN Family medicine 6.8 0.02  

  Surgery Pulmonary surgery 5.9 0.02  

  Internal medicine Infectious diseases 5.0 0.01  

  OB/GYN OB/GYN 4.1 0.01  

  Surgery Pediatric surgery 4.1 0.01  

  Internal medicine Thoracic medicine 4.0 0.01  

  Surgery Cardiovascular surgery 3.5 0.01  

  Surgery Neurosurgery 3.2 0.01  

  Internal medicine Radiology 3.0 0.01  

  Internal medicine Nephrology 2.8 0.01  

  Internal medicine Family medicine 2.7 0.01  

  Internal medicine Gastroenterology 2.7 0.01  

  Surgery OB/GYN 2.7 0.01  

  Orthopedics Orthopedics 2.5 0.01  
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  Internal medicine Cardiovascular medicine 2.4 0.01  

  Internal medicine Rheumatology 2.4 0.01  

  Urology Urology 2.3 0.01  

  Surgery Infectious diseases 2.3 0.01  

  Dermatology Dermatology 2.2 0.01 0.006 

  Internal medicine Radiation oncology 2.1 0.01  

  Surgery Urology 2.0 0.01  

  Internal medicine Gastrointestinal surgery 2.0 0.01  

  Internal medicine Endocrinology 2.0 0.01  

  Ophthalmology Ophthalmology 1.8 0.01 0.005 

  Internal medicine Neurology 1.8 0.01  

  Surgery Orthopedics 1.8 0.01  

  Otorhinolaryngology Otorhinolaryngology 1.7 0.01 0.005 

  Surgery Endocrinology 1.7 0.00  

  Surgery Oral and maxillofacial surgery 1.7 0.00  

  Internal medicine Pulmonary and critical care 1.6 0.00  

  Surgery Family medicine 1.5 0.00  

  Internal medicine Geriatrics 1.5 0.00  

  Surgery Gastroenterology 1.5 0.00  

  Nuclear medicine Nuclear medicine 1.4 0.00 0.004 

  Urology Internal medicine 1.3 0.00  

  Surgery Thoracic medicine 1.3 0.00  

  Orthopedics Orthopedics 1.3 0.00  

  Orthopedics Internal medicine 1.3 0.00  

  Surgery Pulmonary and critical care 1.2 0.00  

  OB/GYN Internal medicine 1.1 0.00  
    Internal medicine Tuberculosis 1.1 0.00   

Note: This table illustrates how we qualify a breast cancer physician-patient's medical knowledge given their specialty using inpatient data. First, column (1) derives 
the average number of hospital admissions per doctor in all specialties and departments treating cancer cases. Assuming that the knowledge on breast cancer 
treatment is proportional to caseloads, we calculate the relative knowledge in column (2) using the average caseload per doctor in their specialty/department relative 
to the highest per-doctor caseload among all the specialties/departments treating the same cancer. Finally, column (3) computes the weighted average of the relative 
knowledge over departments per specialty, weighted by caseload share. Specialists or departments not listed in the table have zero relative knowledge/caseload of 
treating breast cancer. 

Source: NHI database 2004-2018. 
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TABLE A4. DESCRIPTIVE STATISTICS 

 (1) (2)  (3) (4) (5) (6) 

 Data for identifying β  
All physician-patients Physician-patient 

data included for 
estimating 

exchangeability 

 

Nonphysician-
patients 

Physician-patients 
with no advantage, 

R=0=K 

 

      

With no 
network 

R=0 

With 
network 

R=1 
Patient attributes: 

       

With a closer professional tie with doctor 0.000 0.000 
 

0.416 0.000 1.000 0.496 
Pre-normalized measure for knowledge 0.000 0.000 

 
0.055 0.021 0.102 0.068 

Percent knowledge over the raw mean 0.000 0.000 
 

0.324 0.155 0.562 0.420 
Male 0.498 0.834 

 
0.868 0.836 0.913 0.944 

Age 57.83 62.33 
 

60.18 61.52 58.31 58.10 
Log income at diagnosis 10.08 10.75 

 
11.00 10.86 11.18 10.94 

Pre-diagnosis log drug cost (4 years) 2.928 2.878 
 

2.492 2.617 2.316 0.657 
Pre-diagnosis log inpatient cost (4 years) 4.039 3.939 

 
3.398 3.546 3.189 0.880 

Pre-diagnosis trend in inpatient cost 1.069 0.728 
 

0.708 0.417 1.117 0.138 
Attending doctor attributes: 

       

Male 0.850 0.902 
 

0.885 0.888 0.883 0.952 
Experience   13.049 14.435 

 
15.149 14.683 15.804 18.686 

Number of specialties 1.093 1.121 
 

1.141 1.142 1.139 1.157 
Whether work in multiple hospitals 0.481 0.436 

 
0.407 0.408 0.406 0.289 

Teaching hospital 0.214 0.337 
 

0.339 0.329 0.353 0.395 
Veteran hospital 0.154 0.268 

 
0.285 0.293 0.274 0.431 

Private hospital 0.605 0.475 
 

0.464 0.448 0.486 0.364         

Number of hospital admissions 1,378,713 1,251   3,013 1,761 1,252 357 
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TABLE A5. BALANCE STATISTICS AMONG PHYSICIAN-PATIENTS, P-VALUES 

 (1) (2) (3)  (4) (5) (6) 

 Scheme C: Having a strong tie or not  
Scheme D: Patient knowledge above 

median or not 
Predetermined variables Std. mean p-value  Std. mean p-value 
not exactly matched on  diff. t-test KS-test  diff. t-test KS-test 
Patient age -0.12 0.31 0.77 

 
0.21 0.41 0.45 

Patient's income tercile at diagnosis -0.25 0.73 0.96 
 

0.24 0.63 0.73 

Patient's prior spending tercile on drugs  -0.09 0.74 1.00 
 

-0.11 1.00 1.00 

Patient's pre-trend in hospital cost in tercile -0.17 0.25 1.00 
 

-0.46 0.16 1.00 

Doctor experience at admission 0.01 0.90 0.96 
 

0.28 0.35 0.73 

    
    

Number of admissions 
  

277 
   

294 
Number of physician-patients 

  
71 

   
63 

Number of hospitals 
  

7 
   

8 
Number of attending doctors 

  
17 

   
17 

Number of hospital-doctor pairs     17       17 
The number of admissions by cancer site: 

      

Lip, oral cavity, or pharynx 
  

32 
   

32 
Digestive organs and peritoneum 

  
111 

   
129 

Respiratory and intrathoracic organs 
  

na 
   

28 
Breast, genital, or urinary organs 

  
59 

   
30 

Others (e.g., eyes, central nerves, endocrine glands, leukemias) 75       75 

 Note: We exactly match physician-patients according to doctor-hospital and patient types (sex, cancer sites, and terciles of pre-diagnosis 
inpatient spending). In the nearest-neighbor matching procedure, we also include two categorical controls (income terciles and pre-trend in 
hospital cost in tercile) and three continuous controls (2-year age bins, doctor experience at admission in years, and patient knowledge levels) 
with bias corrections as in Abadie and Imbens (2011). Column 6 of table A5 summarizes the statistics of the integrated sample. 
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TABLE A6-1. FIXED-EFFECT REGRESSION RESULTS USING MATCHED PHYSICIAN-PATIENTS 

 
Acute 

inpatient 
stays 

Diagnosis-
to-

treatment  

Cancer therapy: 

  Surgery  Radiation  Chemotherapy  Targeted 
Palliative 

care  
Network 99.5 2438.5 -13.4 -28.9 5.8 22.7 -0.1 

 (184.0) (3551.1) (11.6) (14.0) (9.0) (16.2) (9.7) 
Normalized knowledge (K) -13.4 1091.0 -0.4 -0.9 -1.5 3.7 -0.7 

 (26.1) (428.9) (1.1) (1.2) (1.1) (1.5) (0.8) 
K squared 62.2 -5066.9 2.8 2.8 8.2 -18.8 5.0 

 (124.0) (2200.6) (5.0) (6.1) (5.4) (7.5) (4.7) 
K power 3 -133.0 7833.6 -5.6 -7.2 -13.9 33.9 -9.6 

 (212.0) (3708.9) (8.4) (10.6) (9.2) (12.4) (8.8) 
K power 4 82.3 -3882.9 3.2 5.3 7.0 -19.0 5.5 

 (115.1) (1948.8) (4.5) (5.9) (5.1) (6.6) (5.0) 
Network × K -580.8 -17597.2 85.9 182.4 -24.1 -128.2 8.6 

 (1081.5) (21206.7) (70.8) (83.8) (55.1) (97.0) (57.8) 
Network × K squared 1167.8 45768.2 -201.1 -418.5 29.8 264.7 -40.9 

 (2326.3) (46568.1) (158.0) (184.7) (124.0) (213.3) (126.4) 
Network × K power 3 -978.2 -50564.2 200.7 415.4 -7.8 -241.8 60.0 

 (2174.5) (44547.5) (153.0) (177.8) (121.3) (203.9) (120.3) 
Network × K power 4 288.8 20093.8 -72.4 -150.9 -3.5 82.9 -27.9 

 (747.2) (15662.2) (54.3) (63.0) (43.5) (71.4) (42.2) 

        
N 357 357 357 357 357 357 357 

Adjusted R squared 17% 21% 80% 73% 74% 65% 66% 

Note: We construct a matched sample by combining two well-balanced data of physician-patients, one balancing patients with versus 
without a network (as achieved in Table 6) and the other balancing patients with relevant medical knowledge above versus below the 
median. Both balanced subsamples precisely match physician-patients for their attending doctors, hospitals, and characteristics (e.g., 
sex, cancer sites, and previous hospital spending terciles). In addition to these control variables, we include dummies for four-year 
admission periods and five-year age bins in the regressions. Clustered standard errors at patient levels are in parentheses.   
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TABLE A6-2. FIXED-EFFECT REGRESSION RESULTS USING MATCHED PHYSICIAN-PATIENTS 

 
 Log spending:  Survival: 

  
Total NHI 

cost  Coinsurance 
NHI 

drugs Surgery   
Tube 

feeding  
Radiation 
therapy  Examination   

Lived 180 
days+ 

Lived 
365 

days+ 

Lived 
1095 
days+ 

Network -39.0 -142.9 -114.1 -78.4 23.3 101.1 -74.8  8.7 11.9 10.1 

 (47.8) (74.5) (73.7) (139.7) (18.3) (72.3) (100.6)  (5.7) (8.9) (17.0) 
Normalized knowledge (K) 2.7 10.2 0.3 -5.1 -2.1 -13.9 10.2  1.4 1.8 1.5 

 (8.5) (8.0) (7.8) (18.6) (2.9) (11.3) (11.5)  (0.6) (1.0) (0.8) 
K squared -0.90 -58.8 -1.4 52.5 19.4 59.2 -36.8  -5.7 -6.8 -5.6 

 (32.4) (40.5) (36.1) (93.5) (17.9) (58.0) (50.5)  (2.6) (4.0) (4.3) 
K power 3 -6.4 102.5 12.4 -119.2 -37.9 -93.2 46.3  7.5 8.5 7.0 

 (46.6) (68.6) (62.0) (155.2) (31.5) (103.2) (82.5)  (4.0) (5.9) (8.5) 
K power 4 4.9 -52.8 -12.4 74.1 20.6 47.0 -20.9  -3.1 -3.5 -3.5 

 (22.6) (37.1) (35.1) (80.9) (16.6) (59.2) (43.5)  (2.1) (2.9) (5.1) 
Network × K 226.0 863.4 715.1 486.3 -158.2 -614.1 456.6  -49.1 -71.7 -68.6 

 (274.0) (444.5) (434.4) (822.3) (118.6) (424.5) (609.8)  (32.6) (52.2) (103.6) 
Network × K squared -492.3 -1866.0 -1618.8 -1151.9 372.1 1329.5 -1032.0  100.3 156.5 172.0 

 (579.7) (975.2) (937.0) (1774.7) (278.3) (915.3) (1358.9)  (68.4) (112.3) (229.6) 
Network × K power 3 470.0 1722.2 1563.3 1205.9 -367.7 -1224.1 1005.3  -88.4 -146.7 -185.7 

 (535.9) (932.7) (877.5) (1669.0) (280.8) (863.0) (1316.8)  (62.8) (104.9) (219.2) 
Network × K power 4 -165.6 -578.3 -545.6 -464.2 130.4 406.0 -353.8  28.4 50.1 72.4 

 (182.7) (328.2) (301.8) (578.5) (102.8) (302.5) (467.9)  (21.3) (36.0) (76.4) 

            
N 357 357 357 357 357 357 357  331 324 241 

Adjusted R squared 49% 16% 56% 38% 15% 42% 51%   75% 75% 93% 

Note: We construct a matched sample by combining two well-balanced data of physician-patients, one balancing patients with versus without a network (as achieved in 
Table 6) and the other balancing patients with relevant medical knowledge above versus below the median. Both balanced subsamples precisely match physician-patients 
on their attending doctors, hospitals, and characteristics (e.g., sex, cancer sites, and previous hospital spending terciles). In addition to these control variables, we include 
dummies for four-year admission periods and five-year age bins in the regressions. Clustered standard errors at patient levels are in parentheses.     
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TABLE A7-1.THE ESTIMATED DEGREE OF INFORMATIONAL EXCHANGEABILITY FOR A NETWORK 

  Exchangeability (R=0) Exchangeability (R=1) 
 Percentile   Outcomes:  Coef. SE Coef. SE 

               1  Lived 180 days+ 6.172 4.011 -0.180 0.013 
             10  

 
9.004 5.766 -0.152 0.012 

             25  
 

-8.378 7.585 -0.103 0.011 
             30  

 
-3.315 2.884 -0.086 0.011 

             35  
 

-1.581 1.485 -0.067 0.010 
             40  

 
-0.727 0.794 -0.046 0.012 

             45  
 

-0.208 0.318 -0.019 0.018 
             50  

 
0.238 0.746 0.030 0.046 

             75  
 

0.026 0.220 0.021 0.186 
             90  

 
-0.064 0.117 0.540 1.723 

             99  
 

-0.222 0.581 -0.640 4.913 
               1  Lived 365 days+ 6.567 5.770 -0.167 0.011 
             10  

 
8.528 7.168 -0.139 0.012 

             25  
 

-8.982 12.188 -0.089 0.015 
             30  

 
-2.783 3.405 -0.070 0.017 

             35  
 

-1.016 1.368 -0.049 0.021 
             40  

 
-0.254 0.558 -0.022 0.030 

             45  
 

0.120 0.280 0.021 0.058 
             50  

 
0.302 0.422 0.178 0.393 

             75  
 

0.283 0.680 0.315 1.370 
             90  

 
-0.079 0.422 0.061 0.203 

             99  
 

0.049 5.435 -0.001 0.047 
               1  Lived 1095 days+ 6.805 12.257 -0.147 0.025 
             10  

 
8.268 15.824 -0.122 0.027 

             25  
 

-5.360 12.779 -0.081 0.027 
             30  

 
-1.625 3.987 -0.068 0.025 

             35  
 

-0.593 1.479 -0.057 0.027 
             40  

 
-0.240 0.494 -0.056 0.079 

             45  
 

-0.141 0.222 -0.096 0.363 
             50  

 
-0.139 0.259 -0.285 1.493 

             75  
 

0.071 0.231 0.025 0.083 
             90  

 
0.128 0.035 0.259 0.190 

             99  
 

-0.037 0.040 0.022 0.012 
               1  Log exam cost -7.388 13.437 -0.158 0.018 
             10  

 
-9.171 16.480 -0.136 0.018 

             25  
 

14.336 60.362 -0.102 0.024 
             30  

 
4.123 9.286 -0.093 0.031 

             35  
 

1.774 3.009 -0.089 0.048 
             40  

 
0.884 1.142 -0.097 0.099 

             45  
 

0.529 0.519 -0.169 0.390 
             50  

 
0.433 0.464 1.846 32.982 

             75  
 

0.344 0.644 -0.113 0.142 



25  

             90  
 

-0.224 0.428 0.161 0.146 
             99    -0.184 0.305 -0.121 0.278 
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TABLE A7-2.THE ESTIMATED DEGREE OF INFORMATIONAL EXCHANGEABILITY FOR A NETWORK 

  Exchangeability (R=0) Exchangeability (R=1) 
 Percentile  Cancer therapy: Coef. SE Coef. SE 

                 1  Surgery  32.994 81.292 -0.154 0.014 
               10  

 
288.006 4480.000 -0.129 0.014 

               25  
 

-12.254 23.846 -0.087 0.016 
               30  

 
-8.866 23.389 -0.074 0.017 

               35  
 

-11.232 71.280 -0.064 0.021 
               40  

 
4.744 26.099 -0.067 0.054 

               45  
 

0.873 1.857 -0.264 1.428 
               50  

 
0.569 1.074 0.123 0.145 

               75  
 

0.933 1.784 -0.382 0.366 
               90  

 
-0.196 0.631 -0.060 0.120 

               99  
 

-0.128 0.170 0.072 0.124 
                 1  Radiation   33.783 49.265 -0.156 0.007 
               10  

 
28.879 27.240 -0.131 0.008 

               25  
 

7.048 5.907 -0.085 0.010 
               30  

 
3.135 2.584 -0.068 0.012 

               35  
 

1.102 1.013 -0.047 0.016 
               40  

 
0.175 0.386 -0.017 0.028 

               45  
 

-0.176 0.177 0.063 0.122 
               50  

 
-0.251 0.154 -0.257 0.468 

               75  
 

0.926 7.716 0.045 0.124 
               90  

 
0.077 0.071 0.268 0.222 

               99  
 

-0.081 0.032 0.050 0.032 
                 1  Chemotherapy  -4.070 7.284 -0.223 0.136 
               10  

 
-13.850 25.283 -0.196 0.114 

               25  
 

3.497 4.078 -0.142 0.066 
               30  

 
2.381 2.586 -0.120 0.050 

               35  
 

1.859 2.064 -0.096 0.035 
               40  

 
1.821 2.941 -0.068 0.025 

               45  
 

-6.601 93.780 -0.035 0.024 
               50  

 
0.053 0.362 0.006 0.036 

               75  
 

-0.091 0.132 0.110 0.211 
               90  

 
-1.584 12.608 0.818 0.929 

               99  
 

0.248 0.942 -0.456 1.937 
                 1  Targeted drug 6.498 4.875 -0.180 0.014 
               10  

 
14.391 11.881 -0.152 0.012 

               25  
 

-6.987 5.914 -0.104 0.010 
               30  

 
-4.667 4.514 -0.086 0.010 

               35  
 

-4.611 7.424 -0.067 0.012 
               40  

 
5.836 27.629 -0.042 0.017 

               45  
 

0.067 0.426 -0.005 0.031 
               50  

 
-0.247 0.194 0.085 0.086 

               75  
 

-0.353 0.352 -0.180 0.113 
               90  

 
0.029 0.059 0.162 0.319 

               99    -0.041 0.023 -0.464 2.030 
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TABLE A7-3.THE ESTIMATED DEGREE OF INFORMATIONAL EXCHANGEABILITY FOR NETWORK 

  Exchangeability (R=0) Exchangeability (R=1) 
 Percentile   Log spending:  Coef. SE Coef. SE 

                 1  Surgery cost 18.194 83.149 -0.160 0.020 
               10  

 
-18.623 55.551 -0.137 0.020 

               25  
 

-3.402 8.025 -0.106 0.024 
               30  

 
-3.281 9.482 -0.101 0.040 

               35  
 

-8.008 64.357 -0.102 0.080 
               40  

 
2.118 5.912 -0.121 0.180 

               45  
 

0.590 0.654 -0.197 0.531 
               50  

 
0.292 0.252 -0.820 5.906 

               75  
 

-0.117 0.355 0.038 0.113 
               90  

 
0.050 0.080 0.151 0.237 

               99  
 

-0.049 0.041 0.120 0.189 
                 1  Radiation cost -7.439 8.106 -0.158 0.010 
               10  

 
-10.999 10.868 -0.133 0.010 

               25  
 

11.690 30.389 -0.086 0.013 
               30  

 
4.523 9.543 -0.067 0.017 

               35  
 

2.005 4.716 -0.042 0.024 
               40  

 
0.322 2.503 -0.007 0.042 

               45  
 

7.040 108.576 0.069 0.121 
               50  

 
1.080 2.298 1.665 16.863 

               75  
 

-0.146 0.335 -0.132 0.237 
               90  

 
-0.193 0.690 0.079 0.113 

               99  
 

-0.128 0.102 -0.223 0.927 
                 1  Total NHI cost  -13.715 44.443 -0.168 0.015 
               10  

 
-8.872 17.297 -0.146 0.015 

               25  
 

-4.820 6.537 -0.112 0.018 
               30  

 
-4.294 7.081 -0.103 0.023 

               35  
 

-4.493 11.278 -0.097 0.034 
               40  

 
-8.992 67.387 -0.099 0.059 

               45  
 

4.695 26.597 -0.122 0.128 
               50  

 
1.254 2.532 -0.238 0.454 

               75  
 

0.444 0.590 -9.782 376.383 
               90  

 
1.493 17.201 0.339 0.433 

               99  
 

-0.773 4.718 0.093 0.088 
                 1  Coinsurance -14.922 15.325 -0.161 0.007 
               10  

 
-58.804 117.672 -0.136 0.007 

               25  
 

5.678 5.493 -0.089 0.010 
               30  

 
3.142 3.329 -0.070 0.013 

               35  
 

1.698 2.271 -0.046 0.018 
               40  

 
0.531 1.816 -0.014 0.031 

               45  
 

4.389 32.815 0.052 0.083 
               50  

 
0.811 0.986 0.862 4.064 

               75  
 

-0.235 0.177 -2.437 15.598 
               90  

 
2.050 31.214 -0.445 0.691 

               99    0.145 0.398 0.065 0.073 

 
  



28  

TABLE A7-4.THE ESTIMATED DEGREE OF INFORMATIONAL EXCHANGEABILITY FOR NETWORK 

  Exchangeability (R=0) Exchangeability (R=1) 
 Percentile   Log spending:  Coef. SE Coef. SE 

                  1  Acute inpatient stay -7.669 19.551 -0.165 0.024 
                10  

 
-11.206 28.469 -0.137 0.025 

                25  
 

-6.177 23.144 -0.080 0.043 
                30  

 
-2.002 6.494 -0.054 0.059 

                35  
 

-0.354 1.946 -0.021 0.084 
                40  

 
0.187 0.712 0.025 0.127 

                45  
 

0.327 0.309 0.100 0.211 
                50  

 
0.325 0.216 0.264 0.492 

                75  
 

0.094 0.375 -0.302 1.950 
                90  

 
-0.063 0.142 -0.595 2.890 

                99  
 

-0.071 0.043 -0.190 0.423 
                  1  Diagnosis-to-treatment  2.285 3.359 -0.144 0.030 
                10  

 
3.661 6.389 -0.114 0.040 

                25  
 

-0.870 2.408 -0.060 0.069 
                30  

 
-0.300 1.205 -0.041 0.088 

                35  
 

-0.081 0.669 -0.021 0.124 
                40  

 
-0.004 0.385 -0.003 0.236 

                45  
 

-0.033 0.268 0.055 0.877 
                50  

 
-0.410 0.999 0.068 0.132 

                75  
 

0.072 0.198 -0.055 0.122 
                90  

 
0.014 0.084 -0.023 0.150 

                99  
 

-0.117 0.055 0.084 0.043 
                  1  Palliative care  0.045 16.140 -0.003 1.224 
                10  

 
4.993 59.682 0.181 5.151 

                25  
 

0.814 3.687 -0.174 0.602 
                30  

 
0.553 2.357 -0.086 0.056 

                35  
 

0.230 1.541 -0.027 0.107 
                40  

 
-0.387 1.219 0.029 0.128 

                45  
 

-4.151 23.701 0.094 0.121 
                50  

 
3.127 11.706 0.196 0.115 

                75  
 

2.883 25.445 -0.097 0.067 
                90  

 
-0.012 0.089 -0.025 0.185 

                99  
 

-0.089 0.051 0.114 0.114 
                  1  Drug cost -443.000 13000.000 -0.157 0.009 
                10  

 
-183.000 1650.000 -0.131 0.010 

                25  
 

-12.599 23.800 -0.086 0.013 
                30  

 
-5.153 8.292 -0.069 0.015 

                35  
 

-1.884 2.818 -0.050 0.019 
                40  

 
-0.496 0.929 -0.029 0.027 

                45  
 

-0.002 0.345 0.000 0.063 
                50  

 
0.046 0.252 -0.047 0.294 

                75  
 

0.792 1.250 -0.536 0.596 
                90  

 
-0.002 0.112 0.018 0.802 

                99  
 

-0.009 0.146 -0.005 0.090 
                  1  Tube feeding cost -12.488 20.595 -0.143 0.016 
                10  

 
15.377 20.049 -0.116 0.018 

                25  
 

1.015 1.468 -0.057 0.034 
                30  

 
0.313 0.932 -0.025 0.054 

                35  
 

-0.268 0.794 0.030 0.112 
                40  

 
-1.355 2.559 0.199 0.506 

                45  
 

3.278 9.212 -0.962 4.709 
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                50  
 

0.636 0.417 -0.224 0.216 
                75  

 
-0.062 0.073 -0.054 0.055 

                90  
 

-0.164 0.600 0.111 0.202 
                99    -0.009 0.038 -0.005 0.024 
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A. Understanding the Fixed-Effect Estimates 

We explore fixed-effect linear regressions in Table A2-1 using two expanded 

samples. One covers all the admissions in hospitals that physician-patients visit 

("chosen hospitals"), and the other includes those attended by doctors seen by 

physician patients ("chosen doctors"). These two samples have a dramatically 

greater sample size because both include many covariate cells with no overlap 

between physician-patients and nonphysician-patients. The expanded data's fixed-

effect estimates are strikingly similar across this table but differ remarkably from 

the matching estimates. Both sets of fixed-effect estimates suggest near-zero effects 

of physician patients on surgery adoption and medication spending, the opposite to 

matching estimates. 

We prefer matching methods because fixed-effect linear models require more 

parametric assumptions that are not necessarily valid. See detailed discussions in 

Angrist and Pischke (2009), Hahn and Kuersteiner (2011), and Ahn, Lee, and 

Schmidt (2013). Nevertheless, we briefly discuss the doctor-hospital interaction 

terms from the fixed-effect approach, which is potentially crucial because 43 

percent of doctors practicing in multiple locations (Table 1) might show various 

propensities across hospitals. However, as no doctors in the fully matched sample 

practice in multiple hospitals (Table 2), it is not surprising that adding the 

interaction terms has almost no impact on the results, as we can see in parts (a) and 

(b) of Table A2-2. 

The estimates in part (c) show that omitting the doctor effect leads to patient 

selection issues. Omitting the doctor-fixed effect biases the results substantially 

because of patient selection. Physician-patients are most capable of selecting highly 

skilled doctors who use more advanced surgical therapy and prescribe no 

unnecessary medication. The estimated impact is biased upward for surgery 
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spending by more than 90 percent (0.216/0.112-1) and downward for drug spending 

by 28 percent or more (0.117/162-1). 

Furthermore, the diagnosis-to-treatment interval effect is also biased downward 

by 36 percent (3.75/5.84-1). It is possible that physician-patients have professional 

relationships with the attending doctor, which might have shortened the waiting 

time for the treatment (e.g., Johnson et al., 2016). However, our further exploration 

in Section 4 suggests otherwise. It is only more-informed physician patients who 

have a shorter waiting time. In contrast, professional ties with the attending doctor 

have almost no impact. 
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