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latter to the former. Using a directed bipartite graph defined on students and schools,

we characterize the set of Pareto efficient matchings among those that are individually

rational, balanced and fair. We also provide a polynomial-time algorithm to compute

such matchings. The outcome of this algorithm weakly improves student welfare upon

the one induced when each region independently organizes a standard matching mecha-

nism.

JEL Classification Numbers: C70, D47, D61, D63.

Keywords: ekkyo, balancedness, fairness, algorithm, efficiency, daycare allocation, school

choice, matching with constraints

Date: September 28, 2022.

Kamada: Haas School of Business, University of California, Berkeley, Berkeley, CA 94720, y.cam.24@gmail.com. Kojima:

Department of Economics, University of Tokyo, Tokyo, Japan, fuhitokojima1979@gmail.com. We thank Bobak Pakzad-

Hurson and Shunya Noda for helpful comments. Yutaro Akita, Nanami Aoi, Yusuke Iwase, Kyohei Okumura, Akira

Matsushita, and Ayano Yago provided excellent research assistance. Fuhito Kojima is supported by the JSPS KAKENHI

Grant-In-Aid 21H04979.

1



2

Contents

1. Introduction 3

1.1. Illustrative Example 5

2. Model 7

2.1. Preliminary Definitions 7

2.2. Model of Regions and Efficient iBF 8

3. FIG (Fair Improvement Graph) Cycles 11

3.1. Definition of FIG Cycle 11

3.2. Examples of FIG Cycle 13

4. Characterization of Efficient iBF 15

5. FIG Cycles Algorithm 22

6. Discussions 24

6.1. Strategic Property 25

6.2. Comparative Statics 25

6.3. Weak Priorities 27

6.4. Related Literature 28

7. Conclusion 28

References 29

Appendix 31

Appendix A. Proofs 31

A.1. Proof of Theorem 1 31

A.2. Proof of Theorem 2 32



3

1. Introduction

Matching theory has been applied in numerous real-life markets with a purpose of cen-

tralizing market transactions, but the centralized clearinghouses are still often organized

at a (often small) local level. As a consequence, some efficiency gains are being missed. In

Japan, for instance, allocation of slots at accredited daycares are conducted by individual

municipal governments and, with few exceptions, a child can only attend a daycare in

the municipality of their residence. The City of Tokyo, for example, is divided into 23

small municipalities with the average size being about a half of Manhattan’s, and each

conducts a matching independently.1 Due to the small sizes of the regions, many families

would find inter-district admissions—which is called the ekkyo admission and it is not

prohibited by the law—to be a viable option. Moreover, as a large metropolitan area,

many people cross a city boundary to commute, making it potentially more convenient

to put their children to a daycare center close to their workplace but prohibited.2

We study how to improve upon mechanisms organized at the local level and achieve out-

comes that have desirable fairness and efficiency properties. To do so, we depart from the

standard model of matching between students and schools (Abdulkadiroğlu and Sönmez,

2003) by assuming that each school belongs to exactly one region while each student is a

resident of exactly one region. We consider a balancedness constraint that requires that,

for each region, the number of residents of other regions who are matched to a school in

it, called the inflow, must be equal to the number of its residents who are matched to a

school in other regions, called the outflow. Why is this a reasonable requirement? In the

context of Japanese daycare allocation, for instance, each municipality heavily subsidizes

daycares, so enrolling residents from other municipalities can be a severe financial burden.

Our balancedness constraint is meant to alleviate municipalities’ concerns by guaranteeing

that no municipality carries an excessive burden.

We find that there does not always exist a balanced matching that satisfies stability, a

standard desideratum in school choice literature that is equivalent to individual rationality,

fairness, and non-wastefulness. Given this observation, we weaken our desideratum to only

require individual rationality, balancedness and fairness. Among the matchings satisfying

all the three conditions (there always exists such a matching3), which we call the iBF s,

1The average area of each of the 23 municipalities is 10.4 square miles, while Manhattan’s area is 22.7

square miles.
2To get a sense of the magnitude, over 3.5 million people get on or get off a train in Tokyo’s Shinjuku

Station each day.
3All the conditions are satisfied by the matching where no student is matched to any school.
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we focus on the ones that cannot be further improved upon in terms of students’ welfare,

which we call efficient iBFs.

We first characterize efficient iBFs. To this end, we define a novel bipartite graph called

a fair improvement graph (FIG henceforth) on a matching, where the vertices on one side

represent the students and those on the other side represent the schools, and existence of

an arrow between two vertices depends on preferences, priorities, and the given matching.

We show that an iBF is an efficient iBF if and only if there exists no “FIG cycle,” a cycle

on the FIG, for the matching.

Based on our characterization of efficient iBF, we then provide a polynomial-time algo-

rithm that finds an efficient iBF. The algorithm is called the FIG cycle algorithm and is

illustrated in some detail with an example in Section 1.1. Roughly, each step of the FIG

algorithm checks if the current iBF allows for a FIG cycle and, if so, finds a relocation

of students that improves outcomes for students while retaining individual rationality,

balancedness and fairness.

To understand the markets with the balancedness constraint, we provide further discus-

sions. First, we examine the strategy properties. We show that our mechanism based on

the FIG cycle algorithm turns out not to be strategy-proof. We, however, also show that

there is no strategy-proof mechanism that always outputs an efficient iBF. Second, com-

parative statics are provided to evaluate the effect of merging and splitting regions. Third,

we consider the case with weak priority, which often arises in school choice applications.

Finally, we review the related literature.

We would like to emphasize that our analysis is applicable beyond daycare allocation.

Also in Japan, choice systems for elementary and secondary schools are organized at the

small municipal level as well. Naturally, there exist much potential demand for enrolling in

schools in other municipalities, but admission is severely limited. The issue is not limited

to Japan either. In the U.S., for example, school choice is basically organized at a highly

local level, but some form of interdistrict school choice is practiced in 43 States (Education

Commission of the States, 2017). The analysis of our paper, and particularly the FIG

cycles algorithm, could be applied to improve efficiency of school choice mechanisms.

At a high level, the highly local nature of resource allocation is widespread beyond

daycare allocation or school choice. In kidney exchange in the U.S., for instance, indi-

vidual transplant centers often conduct exchanges on their own before sending remaining

participants to national exchange, resulting in significant efficiency loss (Agarwal et al.,

2019). In COVID-19 vaccine allocation in Japan in 2021, individual municipalities were

charged with vaccinating their respective residents, which resulted in situations in which
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Figure 1

vaccine stocks run out quickly in one municipality while extra stocks remain unused in an-

other. We envision that research is called for to understand how to overcome inefficiency

from the localized nature of allocation problem in a practical manner when existing legal,

institutional and other constraints prohibit full integration.

1.1. Illustrative Example. In this paper we introduce an algorithm of inter-region

transfer that improves students’ welfare while respecting the balancedness condition and

fairness. To gain intuition for why an inter-region transfer may improve welfare, consider

the following simple environment (see Figure 1 for an illustration). There are two regions,

r and r′. One school s1 and two students i1 and i2 reside in r while one school s2 and one

student i3 reside in r′. School s1 has the capacity of two while school s2 has the capacity

of one. Student preferences and school preferences are given as follows:

�i1 : s2, �s1 : i1, i2, i3

�i2 : s2, s1, �s2 : i3, i1, i2.

�i3 : s1, s2,

If an assignment of students to schools is determined region by region and there is no

inter-region transfer, the efficient matching is given by

µ =

(
s1 s2 ∅
i2 i3, i1

)
,
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which is realized by, for instance, running the student-proposing deferred acceptance

algorithm in each region separately. However, if the two students i1 and i3 are sent to

the schools in each other’s regions, that is, if i1 goes to s2 and i3 goes to s1, then in the

realized matching,

µ′ =

(
s1 s2 ∅
i2, i3 i1 ∅

)
,

students are matched with their respective first-best school. In doing so, region r1 takes

in one student from outside (student i3) while sending one student outside (student i1),

so the balancedness condition is satisfied.

Two things are noteworthy here. First, the number of students who are matched to

some school is increased from µ to µ′. This is because, by swapping students between

the two regions, the unmatched student i1 was able to be matched with a school. We

introduce an algorithm to make such an improvement possible.4

Second, there is another matching that respects the balancedness condition, which is

µ′′ =

(
s1 s2 ∅
i3 i2 i1

)
.

However, this matching is not fair according to our definition, as i1 is ranked higher than

i3 at s2. This suggests that care is needed about who can be moved to new schools

across regions. The algorithm we introduce ensures that fairness is respected when an

improvement is made.

We aim to achieve efficiency via inter-regional transfer like the one described in the

above example. Specifically, we propose an algorithm that takes as an input an arbitrary

iBF and achieves a Pareto improvement. The algorithm is based on a directed bipartite

graph between students and schools that we call the fair improvement graph (or the FIG),

and in each of its steps it “implements” a cycle in this graph—called a FIG cycle—, i.e.,

we move a student to a school that she points to. The outcome of repeatedly implementing

FIG cycles turns out to be an efficient iBF. In fact, our main results characterize efficient

iBF using cycles: we show that an iBF is an efficient iBF if and only if there is no FIG

cycle on it.

Let us now discuss these results in the context of the aforementioned example. In our

FIG, each school is pointed to by the top student (according to its priority) among those

who strictly prefer the school to their current match and are acceptable to the school.

This means that, under µ, s1 is pointed to by i3 while s2 is pointed to by i1. Note that

4As we will explain in more detail later, this type of improvement is in a sharp contrast with most exist-

ing literature where the number of matched students is constant between before and after an improvement.
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i2 cannot point to s2 as he is not the “top student” for s2 (i1 is). This pointing rule is

the same as that of Erdil and Ergin (2008). Also, each school points to the students that

are matched to the school. So, s1 points to i2 and s2 points to i3. This pointing rule is

common in the algorithms that use cycles such as Top Trading Cycles (TTC) or Erdil

and Ergin (2008).

Note, however, that the graph constructed in this way does not have a cycle even

though matching µ is not an efficient iBF In order to achieve a Pareto improvement, we

additionally require that each school with a vacancy points to any student matched to

another school in the school’s region as well as any unmatched students living in that

region. In our example, this lets s1 point to i1.5 With this, there is a cycle “i1 → s2 →
i3 → s1 → i1.” Our characterization result shows that this implies µ is not an efficient

iBF. Indeed, it is a not an efficient iBF because it is Pareto dominated by µ′, which is an

iBF. In fact, the Pareto-improvement µ′ is obtained by “implementing” this cycle. On µ′,

the FIG cycle lets i2 point to (only) s2, s2 point to i1, but does not let i1 point to any

school (because i1 is matched to her first choice school). Since i3 does not point to any

school (because i3 is matched to her first choice school) either, there is no FIG cycle on

µ′. Our characterization result shows that this implies µ′ is an efficient iBF. Indeed, one

can verify that there is no iBF that Pareto dominates µ′.

The remainder of this paper proceeds as follows. Section 2 provides a model where we

define efficient iBF. Section 3.1 introduces the fair improvement graph (FIG) and FIG

cycles. Section 4 provides our main theorem, which characterizes efficient iBF by non-

existence of FIG cycles. Section 5 defines the FIG cycles algorithm which outputs an

efficient iBF. Section 6 provides various discussions, and Section 7 concludes. Proofs of

all results are provided in the Appendix.

2. Model

2.1. Preliminary Definitions. Let there be a finite set of students I and a finite set

of schools S. Each student i has a strict preference relation �i over the set of schools

and being unmatched (being unmatched is denoted by ∅). For any s, s′ ∈ S ∪ {∅}, we

write s �i s′ if and only if s �i s′ or s = s′. Each school s has a strict priority order �s

5In this example, the school with a vacancy points to an unmatched student. The benefit from requiring

a school to point to a student matched to another school in the same region does not appear in the current

example. We will explain this point in “Example 2, Continued.”
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over the set of students and leaving a position vacant (which is denoted by ∅).6 For any

i, i′ ∈ I ∪{∅}, we write i �s i′ if and only if i �s i′ or i = i′. Each school s ∈ S is endowed

with a (physical) capacity qs, which is a nonnegative integer.

Student i is said to be acceptable to school s if i �s ∅ (and unacceptable otherwise).7

Similarly, s is acceptable to i if s �i ∅.8 It will turn out that only rankings of acceptable

partners matter for our analysis, so we often write only acceptable partners to denote

preferences and priorities. For example,

�i: s, s′

means that school s is the most preferred, s′ is the second most preferred, and s and s′

are the only acceptable schools under preferences �i of student i.

A matching µ is a mapping that satisfies (i) µi ∈ S ∪ {∅} for all i ∈ I, (ii) µs ⊆ I and

|µs| ≤ qs for all s ∈ S, and (iii) for any i ∈ I and s ∈ S, µi = s if and only if i ∈ µs. That

is, a matching simply specifies which student is assigned to which school (if any).

A matching is individually rational if no student or school is matched with an un-

acceptable partner.

Given a matching µ, we say that a student i has justified envy to j ∈ I if there is a

school s ∈ S such that (i) µj = s, (ii) s �i µi, and (iii) i �s j. We say that matching µ is

fair if there is no pair of students (i, j) ∈ I2 such that i has justified envy to j.

Finally, a matching µ weakly Pareto dominates a matching µ′ if µi �i µ′i for every

i ∈ I. A matching µ Pareto dominates µ′ if µ weakly Pareto dominates µ′ and µ 6= µ′.

2.2. Model of Regions and Efficient iBF. There is a set of regions, denoted R, which

is a partition of I ∪ S. Formally, R satisfies the following conditions.

(1) Each r ∈ R is a nonempty subset of I ∪ S.

(2) r ∩ r′ = ∅ for any r, r′ ∈ R such that r 6= r′.

(3)
⋃
r∈R r = S ∪ I.

The interpretation is that each s belongs to a single r ∈ R and each i is a resident of a

single r ∈ R. Let r(s) be the region r such that s ∈ r, and similarly for r(i).

We call E = (I, S, (�a)a∈I∪S, (qs)s∈S, R) an environment.

We are now ready to introduce the key concept of this paper, “balancedness.”

6Strictness of priorities is assumed just for the sake of simplicity. In Section 6.3, we consider the case

when indifferences are allowed and show that most results carry over to such a case.
7We denote singleton set {x} by x when there is no confusion.
8In some applications, all schools may regard all students as acceptable. None of our results will hinge

on the assumption that some students can be unacceptable to some schools.
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Figure 2. Three-way transfer (Example 1). There is one white dotted

square in each school, which expresses the fact that the capacity of the

school is one.

Definition 1. µ is balanced if for each r ∈ R,

(2.1)
∑
s∈r

|{i|i ∈ µs, i 6∈ r}|︸ ︷︷ ︸
inflow to r

=
∑
s6∈r

|{i|i ∈ µs, i ∈ r}|︸ ︷︷ ︸
outflow from r

As eq. (2.1) shows, balancedness means that for any given region r, the inflow of students

to r is the same as the outflow of students. Note that balancedness is not a “pairwise”

notion, that is, it does not necessarily require that for every pair of regions r and r′, the

number of students who live in r and are matched to a school in r′ is the same as the

number of students who live in r′ and are matched to a school in r. The next example

illustrates.

Example 1 (Three-way transfer). Let I = {i1, i2, i3}, S = {s1, s2, s3}, R = {r1, r2, r3}
and rk = {ik, sk} for each k = 1, 2, 3. Let

µ =

(
s1 s2 s3 ∅
i3 i1 i2 ∅

)
.

See Figure 2 for a graphical representation. Note that under µ, the number of students

who live in r1 and are matched to a school in r2 is 1 while the number of students who live

in r2 and are matched to a school in r1 is 0. Matching µ is, however, balanced because it

satisfies eq. (2.1): For each region, the inflow and outflow are both 1. �
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Figure 3. Multiple efficient iBFs (Example 2). Both µ and µ′ are an

efficient iBF.

Below is our solution concept in this paper.

Definition 2. Matching µ is said to be a efficient iBF if µ is an iBF and there is no

iBF µ′ that Pareto dominates µ.

In the standard environment without the balancedness constraint, there is a unique

efficient iBF, which correspond to a “student-optimal stable matching.” In our setting,

there may be multiple efficient iBFs. The following example illustrates.

Example 2 (Multiple efficient iBFs). Let I = {i1, i2, i3}, S = {s1, s2, s3}, R = {r, r′}
where r = {i1, s1, s2} and r′ = {i2, i3, s3}. Each school has the capacity of one. Student

preferences and school priorities are given as follows:

�i1 : s3, s1, �s1 : i2, i1,

�i2 : s1, �s2 : i3,

�i3 : s2, �s3 : i1.

Let

µ =

(
s1 s2 s3 ∅
i2 ∅ i1, i3

)
, µ′ =

(
s1 s2 s3 ∅
∅ s3 i1, i2

)
.

See Figure 3 for a graphical representation. We show that both µ and µ′ are an efficient

iBF. To see this, first notice that there are only four individually rational and balanced
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matchings. They are µ, µ′,

µ′′ =

(
s1 s2 s3 ∅
i1 ∅ ∅, ∅

)
,

and the empty matching (i.e., the matching where no student is matched to any school).

The latter two matchings are Pareto dominated by µ and µ′ while µ and µ′ do not Pareto

dominate each other, and one can verify by inspection that both µ and µ′ are fair, and

hence an efficient iBF. We note that without the balancedness constraint, the student-

optimal stable matching would be:

µ′′′ =

(
s1 s2 s3 ∅
i2 i3 i1 ∅

)
.

But µ′′′ is not balanced because the inflow to region r is 2 while the outflow from r is

1. �

3. FIG (Fair Improvement Graph) Cycles

3.1. Definition of FIG Cycle. The key steps of our analysis involve defining bipartite

directed graphs over the sets of students and schools, and identifying cycles on them.

A bipartite directed graph on I and S, or simply a graph, G ⊆ (I × S) ∪ (S × I), is

a set of ordered pairs of agents in I ∪ S. An interpretation is that if (i, s) ∈ G, then

there is an arrow pointing from i to s. In this case, we say “i points to s.” The case

of (s, i) ∈ G is analogous. Given a graph G, a cycle in G is any sequence of the form

(i1, s1, i2, s2, . . . , im, sm) where

(1) ik points to sk, i..e, (ik, sk) ∈ G,

(2) sk points to ik+1, i.e, (sk, ik+1) ∈ G,

(3) ik 6= ik′ for every k 6= k′, and

(4) sk 6= sk′ for every k 6= k′,

with m + 1 = 1. We will regard any two cycles as defined here, (i1, s1, . . . , im, sm) and

(ik+1, sk+1, im, sm, i1, s1, . . . , ik, sk), as identical to each other.

Let Dµ
s := {i ∈ I|s �i µi}, and Tops(I

′) be the student i ∈ I ′ who has the highest

priority among those in I ′ at �s.
Now we define a particular type of a graph and a cycle on it. This cycle will be used

to characterize efficient iBF as well as to define our algorithm.

Definition 3. Given a matching µ, the fair improvement graph (FIG) for µ is a

graph such that, for any i ∈ I and s ∈ S,

(1) student i ∈ I points to school s ∈ S if i = Tops(D
µ
s ) and i is acceptable to s, and
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(2) school s ∈ S points to student i ∈ I if either

(a) µi = s, or

(b) |µs| < qs and, [i ∈ r(s) and µi = ∅] or µi ∈ r(s).

A fair improvement graph cycle (FIG cycle) on µ is a cycle in the FIG for µ.

In the FIG for a given matching µ, each school can be pointed to by at most one student.

A student i can point to a school s when she finds s to be better than her current outcome

µi, and if she is acceptable to s and the best student for s among those who find s to be

an improvement. In this sense, the student that can point to s is selected in the most fair

manner, and this is why we call the graph the “fair improvement graph.”

On the other hand, a school s can point to a student i in two different cases. The

first case is as in other algorithms based on cycles in the literature such as the TTC

algorithm (Shapley and Scarf, 1974) and the stable improvement cycles algorithm (Erdil

and Ergin, 2008). This is when i is currently matched to s, and it is described by item 2a

in Definition 3. The second case, described by item 2b in Definition 3, depends on the

notion of regions. School s can point to i′ if s has a vacancy and either i lives in the

region of s and is unmatched, or i is matched to a school in the region. The need for this

second case and the logic behind this particular pointing rule will become clear in a later

example (Example 5).

Given a matching µ and a cycle of the form F = (i1, s1, i2, s2, . . . , im, sm), call µ′ the

matching generated by (µ,F) if

µ′ik = sk for each k ∈ {1, . . . ,m}, and µ′j = µj for all j ∈ I \ {i1, . . . , im}.

Given a matching µ and a cycle F , we say that we implement F on µ when we create

the matching generated by (µ,F).

As we will show in Section 4, whether there exists a FIG cycle is crucial to the char-

acterization of efficient iBF. Also, in the algorithm we define in Section 5, we repeatedly

implement FIG cycles. But before stating the formal results that use the notion of FIG

cycles, let us illustrate the concept of FIG cycle through a series of examples in the next

subsection.

Remark 1. Erdil and Ergin (2017) consider a model with weak student preferences (and

school priorities) and propose to improve students’ welfare by using chains in addition

to cycles. A chain can start from a matched or unmatched student and ends at a school

that has a vacant seat. We could define a chain in our model too, while restricting the

pointing from schools to students to the one described in item 2a of Definition 3.
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Figure 4. Example 2 Continued. There are two FIG cycles.

Let us be forthcoming about the similarity and difference between their chains and our

FIG cycles. First, in our model, implementing all chains and cycles under such a pointing

rule would violate balancedness (there is no such issue in Erdil and Ergin (2017) as they

have no balancedness constraint). For example, in Example 2, there would be one chain

going out of r (i1 → s3) while there would be two chains going into r (i2 → s1 and

i3 → s2). As we will see in Theorem 1, balancedness is respected if we implement any

FIG cycle. Second, one might argue that “connecting” chains might work. That is, we

would start from a chain, and at the end of the chain (which is a school), we would find

an unmatched student in the same region and see if there was a chain originating from

that student. If there was such an arrow, then we would follow the arrows. Continuing

this way, if an arrow eventually pointed to a school that had already appeared, then we

would call the closed set of arrows a cycle. Cycles constructed in this way turns out to

be the same as our FIG cycles. One can view that our pointing rule from schools to

students, especially the part described in item 2b of Definition 3, correctly captures how

this “connecting” should be done. Third, the reasons behind why there are chains are

different. In Erdil and Ergin (2017), a chain is implemented on a stable matching. For

the existence of chains it is necessary that the student preferences are weak: if instead

the students’ preferences are strict, then the last student on the chain would have strictly

preferred to be matched to a vacant position in the last school in the chain under the

original matching, so the original matching was not stable. In our model, there can exist

a chain (defined in the absence of the pointing rule described in item 2b of Definition 3)

because of the balancedness constraint. �

3.2. Examples of FIG Cycle.
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Figure 5. Example 3. School s2 ∈ r points to an unmatched student

i4 ∈ r because s2’s capacity is currently not full.

Example 2, Continued. Consider the same environment as in Example 2. The FIG

for µ′′ is drawn in Figure 4. Note that there are two FIG cycles:

F := (i1, s3, i2, s1) and F ′ := (i1, s3, i3, s2).

Implementing the former cycle results in µ, and implementing the latter cycle results in

µ′. Note that, in this example, it is important that the pointing rule for FIG lets a school

point to a student matched to another school in the same region.9 �

Example 3 (Capacity matters for FIG cycle). Let I = {i1, i2, i3, i4}, S = {s1, s2, s3},
R = {r, r′} where r = {i1, i2, i4, s1, s2} and r′ = {i3, s3}. Schools s1 and s3 have the

capacity of one each while s2 has the capacity of two. Student preferences and school

priorities are given as follows:

�i1 : s1, �s1 : i1, i2, i3, i4,

�i2 : s2, s1 �s2 : i2, i3,

�i3 : s1, s2, �s3 : i4.

�i4 : s1, s3

Consider the following matching:

µ =

(
s1 s2 s3 ∅
i1 i2 ∅ i3, i4

)
,

which, by inspection, one can show to be fair. This matching as well as the FIG for µ

is drawn in Figure 5. We note two features of this FIG. First, s2 has an arrow directed

to an unmatched student i4 even though it is already matched with student i2. This is

9This is the point alluded to in footnote 5.
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because s2’s capacity is not filled under µ: the capacity is 2 while it is matched to only

one student (student i2). Second, there are multiple arrows from student i3. Although the

rule for pointing in a FIG implies that each school is pointed to by at most one student,

one student can point to multiple schools if she is the “number one” choice from multiple

schools. In this example, i3 ranks at the top among all students who prefer s1 to their

current match (i.e., among {i3, i4}), and she also ranks at the top among all students who

prefer s2 to their current match (i.e., among {i3}). Note that there is a single FIG cycle:

F := (i3, s2, i4, s3).

Implementing this cycle, we obtain the following matching:

µ′ =

(
s1 s2 s3 ∅
i1 i2, i3 i4 ∅

)
,

which is an improvement over µ and is fair. One can show by inspection that µ′ is also

an efficient iBF. �

4. Characterization of Efficient iBF

This is the main section of this paper, and we are going to formalize the following

claims:

(1) If we implement a FIG cycle on a balanced and fair matching, then it results

in a balanced and fair matching that Pareto dominates the original matching

(Theorem 1).

(2) If there is no FIC cycle on a given iBF, then that matching is an efficient iBF

(Theorem 2).

These results in particular imply the following characterization of efficient iBF: Given an

iBF, it is an efficient iBF if and only if there is no FIG cycle on it (Corollary 1). In what

follows, we will examine each claim and explain their intuition in detail.

Theorem 1. Let µ be a balanced and fair matching. If there exists a FIG cycle F on

µ, then a matching generated by (µ,F) is balanced and fair, and Pareto dominates µ.

Moreover, if µ is individually rational, then the matching generated by (µ,F) is also

individually rational.

An implication of this theorem is that, if we can find a FIG cycle on a given matching,

then that matching cannot be an efficient iBF. Thus, one can think of this theorem as

providing a necessary condition for a matching to be an efficient iBF. (As we explained,
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Figure 6. Why balancedness is maintained when a cycle is implemented

(proof intuition for Theorem 1).

Theorem 2 that we state below provides a sufficient condition, and combining those results

will provide a characterization of efficient iBF)

Let us explain the intuition for the proof. For this, let µ be the original matching and

µ′ be the matching generated by (µ,F) where F is a FIG cycle on µ. The proof shows

Pareto dominance, fairness and balancedness one by one. First, it is straightforward that

µ′ Pareto dominates µ.

Second, fairness of µ′ is due to the pointing rule used in the FIG. A crucial step is

to show that no student has a justified envy to student ik who is newly matched to sk

under µ′, where ik and sk appear in the FIG cycle (i.e., ik points to sk under the FIG).10

If some student i finds sk to be better than her match under µ′, then she should have

also found sk to be better than her match under µ (because µ′ Pareto dominates µ). But

the pointing rule for FIG implies that ik is the best student (according to sk’s priority)

among those who found sk to be better than the match under µ. So, in particular, i is

not higher than ik under sk’s priority. This implies that i cannot have a justified envy to

ik under µ′.

Finally, balancedness of µ′ holds because the FIG cycle is “closed,” that is, for any

given region r, if an arrow from a student goes outside of r along the cycle, then another

arrow from a student must come back to r and vice versa, which implies that the number

of times the arrows go outside must be equal to the number of times the arrows come back

10Justified envy to other students matched to sk or those that involve other schools can be shown not

to exist by using fairness of µ and the fact that µ′ Pareto dominates µ.
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Figure 7. Example 4. µ is a unique efficient iBF, and there is no FIG cycle

such that implementing it on µ0 results in µ. Meanwhile, implementing a

FIG cycle on µ0 (indicated by thick arrows in the left panel of the figure)

results in µ′, and implementing a FIG cycle on µ′ (indicated by thick arrows

in the middle panel of the figure) results in µ.

to r. Whether balancedness is maintained by implementing a cycle may not be obvious

due to the fact that an outgoing arrow may carry a student who lives in r or one who

does not live in r, and similarly an incoming arrow may carry either type of a student.

Figure 6 shows that in every possible case, balancedness is maintained when a cycle is

implemented.11 Feasibility would also be violated if an arrow that goes across regions

can originate from a school, a possibility that the definition of FIG prohibits. Example 5

illustrates this point.

Note that Theorem 1 does not assert that implementing a FIG cycle on a balanced

and fair matching necessarily results in an efficient iBF. Indeed, the following example

presents a case in which one needs to implement FIG cycles more than once to reach an

efficient iBF.

Example 4 (Multiple rounds of FIG cycles). Let I = {i1, i2}, S = {s1, s2}, R = {r} .

Each school has the capacity of one. Student preferences and school priorities are given

11Hafalir, Kojima and Yenmez (2018) study TTC under a variety of constraints, one of which is the

balancedness constraints of the present paper. They verify that the balancedness constraints satisfy a

condition called M-concavity, which Suzuki, Tamura and Yokoo (2018) showed is sufficient for the outcome

of a certain version of TTC to satisfy balancedness. Although their TTC algorithm is substantially

different from ours, one might also be able to use a similar indirect approach to establish balancedness

of the outcome of our algorithm.
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as follows:

�i1 : s2, s1, �s1 : i1, i2,

�i2 : s1, s2, �s2 : i2, i1.

Let µ0 be the empty matching. Starting from µ0, there are three FIG cycles:

F := (i1, s1), F ′ := (i2, s2), and F ′′ := (i1, s1, i2, s2).

It is straightforward to see that there is a unique efficient iBF, which is

µ =

(
s1 s2 ∅
i2 i1 ∅

)
.

However, µ is not a matching generated by (µ0, F̃) where F̃ is either F , F ′ or F ′′. The

reason is that, for example, student i1 does not point to s2 in the FIG for µ0 because she

is not the top choice of s2 among those who point to s2 (s2’s top choice is i2).

The efficient iBF can be obtained by “two rounds of FIG cycles” starting from µ0:

First, implementing the FIG cycle F ′′ on µ0, we obtain:

µ′ =

(
s1 s2 ∅
i1 i2 ∅

)
.

Second, implementing

F ′′′ := (i1, s2, i2, s1)

on µ′ results in µ. �

Another comment is in order. Theorem 1 asserts that, among other things, implement-

ing a FIG cycle on a balanced matching results in a balanced matching. This property

depends on a somewhat subtle manner in which we define the FIG, as the following

example illustrates.

Example 5 (Pointing rule for FIG). Let I = {i1, i2}, S = {s1, s2, s3}, R = {r, r′} where

r = {i1, s1, s2} and r′ = {i2, s3}. Each school has the capacity of one. Student preferences

and school priorities are given as follows:

�i1 : s2, s3, s1 �s1 : i1, i2

�i2 : s1, s2 �s2 : i2, i1,

�s3 : i1.
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Figure 8. Example 5. Student i1 lives in r and student i2 lives in r′. If we

allowed s1 to point to i1 (the dashed arrow) in the FIG and implemented the

resulting cycle (i2, s1, i1, s2), the balancedness constraint would be violated.

Consider the following matching:

µ =

(
s1 s2 s3 ∅
∅ i2 i1 ∅

)
.

Note that this matching is a matching generated by (µ0,F) where µ0 denotes the empty

matching and we let F := (i1, s3, i2, s2). The cycle F is a FIG cycle and µ is fair.

Now, consider the FIG on µ, which is depicted in Figure 8. Suppose that we hypo-

thetically allow each school with a vacancy to point to any student that lives in the

same region, irrespective of where that student is currently matched. This means that

s1 points to i1 (which is not allowed in the FIG, according its pointing rule). This ad-

ditional pointing is depicted by a dotted arrow in Figure 8. With this arrow, there is a

cycle F ′ := (i1, s2, i2, s1). However, the matching generated by (µ,F ′) violates the bal-

ancedness constraint. The reason is that implementing this cycle on µ would result in

one less outflow for region r while the inflow does not change. This happens because the

arrow going out of region r starts from a school, not a student. In the definition of the

FIG, all arrows going out of regions are from students. As we explained when providing

the intuition for the proof of balancedness in Theorem 1 (see Figure 6), this feature en-

sures that implementing any FIG cycle on any balanced matching results in a balanced

matching. �

Theorem 2. Let µ be an iBF. µ is an efficient iBF if there exists no FIG cycle on µ.

The proof is by contraposition. That is, we take µ that is an iBF and assume that

there is another iBF µ′ that Pareto dominates µ. Then we show that there exists a FIG

cycle on µ.
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To find a FIG cycle, we construct a graph. In this graph, the students who are associated

with arrows are those whose outcomes are different between µ and µ′. We denote by I ′ the

set of those students. Meanwhile, the schools with arrows are the ones that are matched

to students in I ′ under µ′ (which means that these are the schools that are matched to

some new students under µ′ relative to µ). We denote by S(µ′) the set of those schools.

Also, let S(µ) be the set of schools that students in I ′ are matched with under µ.

To understand the complication in the proof, consider first a simple case: there is a

single region r (i.e., a standard environment without a balancedness constraint), and µ is

a stable matching (in the standard sense). Then, since stability implies non-wastefulness,

it is immediate that S(µ′) = S(µ). We can have each school s point to students in µs∩ I ′,
and allow a student in I ′ point to s if she is the top student among I ′ who regard s to

be an improvement relative to µ. This way, each school is pointed to by one student, and

each student is pointed to by one school. Thus, there is a cycle, and with some work, one

can prove that such a cycle must be a FIG cycle. This is essentially the same method as

what is used in Erdil and Ergin (2008).12

In our problem, complication arises for two reasons. First, fairness alone does not

imply non-wastefulness, so µ may have some waste (for example, consider the empty

matching µ0 in Example 4). This means that S(µ′) may not be equal to S(µ), so a graph

constructed in the above manner might not have a cycle (schools in S(µ′) \ S(µ) would

have no outgoing arrow, and those in S(µ) \ S(µ′) would have no incoming arrow). This

suggests we need an alternative way of forming a graph. Second, arrows might go in and

out of any region, hence in defining the alternative graph, we must make sure that the

balancedness constraint would be respected when implementing a cycle in the graph.

We overcome these difficulties by constructing a graph, denoted G(µ, µ′), in the following

manner. First, each school in S(µ′) is pointed to by the top student among those in I ′ who

regard the school to be an improvement relative to µ, just as in the “simple case” above.

Second, each student i in I ′ is pointed to by a school in the following three different ways

depending on i’s outcome under µ:

(1) If µi ∈ S(µ′), then we let µi point to i. This is the case that is analogous to the

“simple case” explained above.

12We note that Erdil and Ergin (2008) allow school priorities to be weak, while we assume strict

preferences here. However, as explained in Section 6.3, our analysis extends to the case with weak

priorities without any significant change.
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Figure 9. Example 6. Construction of a FIG cycle in the proof of Theorem 2.

(2) If µi ∈ S \S(µ′), then we can show, using individual rationality and balancedness,

that we can find a school that resides in µi’s region and belongs to S(µ′) whose

capacity is not filled under µ.13 We let such a school point to i.

(3) If µi = ∅, then we can show, again using individual rationality and balancedness,

that we can find a school that resides in i’s region and belongs to S(µ′) whose

capacity is not filled under µ. We let such a school point to i.

Since each school is pointed to by one student, and each student is pointed to by one

school, G(µ, µ′) has a cycle. The proof shows that any cycle in this graph is a FIG cycle.

The next example illustrates how our construction works in a specific environment.

Example 6 (Construction of a FIG cycle). Let I = {i1, i2, i3, i4}, S = {s1, s2, s3, s4},
R = {r, r′} where r = {i1, i2, i3, s1, s2, s3} and r′ = {i4, s4}. School s2 has the capacity

of two while all other schools have the capacity of one. Student preferences and school

13To show the existence of such a school, the proof constructs another graph, which is so much fun,

but unfortunately we have to omit the detail for the space consideration. See the proof in the Appendix

for the full experience of the proof.
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priorities are given as follows:

�i1 : s2, s1, �s1 : i1,

�i2 : s4, s2, �s2 : i2, i3, i1, i4,

�i3 : s2, �s3 : i4,

�i4 : s2, s3, �s4 : i2.

Consider the following matchings:

µ =

(
s1 s2 s3 s4 ∅
i1 i2, i3 ∅ ∅ i4

)
, µ′ =

(
s1 s2 s3 s4 ∅
∅ i1, i3 i4, i2 ∅

)
.

They are both an iBF, and µ′ Pareto dominates µ.

Let us explain how to obtain the graph G(µ, µ′) and a FIG cycle in this environment

(see Figure 9 for a graphical illustration). First, note that I ′ = {i1, i2, i4}, S(µ) = {s1, s2},
and S(µ′) = {s2, s3, s4}. Recall that a student in I ′ points to a school in S(µ′) if and only

if she is the top student according to the school’s priority among those who prefer the

school to their current match. Hence, the edges originating at a student in G(µ, µ′) are

(i1, s2), (i2, s4), and (i4, s3). Next, we illustrate how a student is pointed to by a school.

(1) µi1 = s1 ∈ S \ S(µ′). This is case 2 of the aforementioned pointing rule from a

school to a student. School s3 is the only school that resides in µi1 ’s region r and

belongs to S(µ′) whose capacity is not filled under µ. Thus, (only) s3 points to i1.

(2) µi2 = s2 ∈ S(µ′). This is case 1 of the pointing rule, and thus s2 points to i2.

(3) µi4 = ∅. This is case 3 of the pointing rule. School s4 is the only school that

resides in i4’s region r′ and belongs to S(µ′) whose capacity is not filled under µ.

Thus, (only) s4 points to i4.

Overall, the graph G(µ, µ′) can be drawn as in Figure 9. There is a unique cycle on

G(µ, µ′), which is (i1, s2, i2, s4, i4, s3). One can check that this is a FIG cycle as well. �

Theorem 1 and Theorem 2 together imply the following characterization of efficient iBF

Corollary 1. Let µ be an iBF. µ is an efficient iBF if and only if there exists no FIG

cycle on µ.

5. FIG Cycles Algorithm

Let µ̃ be an arbitrary iBF, e.g., the empty matching. Building on Corollary 1, we define

a FIG cycles algorithm on µ̃ as follows.

FIG Cycles Algorithm:
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Step 0: Let µ̃ be an arbitrary iBF, e.g., the empty matching. Let µ0 = µ̃ and move to

Step 1.

Step l (l ≥ 1): If there is no FIG cycle on µl−1, terminate the algorithm and output

µl−1. Otherwise, choose a FIG cycle F on µl−1 arbitrarily and let µl be the matching

generated by (µl−1,F), and go to Step l + 1.

Corollary 2. Let µ̃ be an arbitrary iBF. The FIG cycles algorithm on µ̃ runs in a poly-

nomial time, and its output is an efficient iBF.

Proof. Take an arbitrary iBF and denote it by µ̃. Theorems 1 and 2 together show that

the output of the FIG cycles algorithm on µ̃ is an efficient iBF. To show that the algorithm

runs in a polynomial time, first note that each student can only become better off while

running the algorithm, and at least one student must be made strictly better off at each

step as long as the algorithm does not terminate in that step. Therefore, at most |I|× |S|
steps are necessary for terminating the algorithm. Second, within each step, finding a

FIG cycle can be done in a polynomial time.14 These two observations show that the

algorithm runs in a polynomial time, as desired. �

In some applications, a school may give a higher priority to residents of that school’s

region than non-residents. Let us now consider such a case. Formally, assume that i �s j
for each r ∈ R, s ∈ r ∩ S, i ∈ r ∩ I, and j ∈ I \ r.

We consider a special fair matching, namely the matching that is produced by running

the standard deferred acceptance algorithm of Gale and Shapley (1962), separately in

each region. Formally, it is defined as follows.

Definition 4. A region-wise student-optimal stable matching µRW is a matching

that satisfies the following:

(1) For each r ∈ R and each i ∈ r, we have µRWi ∈ (r ∩ S) ∪ {∅}.
(2) µRW is individually rational.

(3) For each r ∈ R, there is no pair of a student and a school i, s ∈ r such that

s �i µRWi , i �s ∅, and |µRWs | < qs.

(4) For each r ∈ R, there is no pair of students i, i′ ∈ r such that i has justified envy

to i′ under µRW .

(5) µRW weakly Pareto dominates all matchings that satisfy conditions (1), (2), (3)

and (4).

14There are well-known polynomial-time algorithms that identify a cycle if one exists and otherwise

show that there is no cycle. The “depth-first search” algorithm, for example, has the running time of

O(|I| × |S|) (Cormen et al., 2001).
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Intuitively, a region-wise student-optimal stable matching requires that a matching

restricted to each region (i.e., consider the students and schools that reside in that region)

is a student-optimal stable matching in the standard sense. By Gale and Shapley (1962),

a region-wise student-optimal stable matching always exists, and it can be obtained by

their deferred acceptance algorithm in a polynomial time. By the assumption in this

section that schools rank students from the same region higher than those from other

regions (so a student living in r cannot have justified envy to another student living in r′

if the latter student is matched to a school in r′), it is fair.15

The next corollary considers the case when we run a FIG cycles algorithm starting from

this matching.

Corollary 3. The output of a FIG cycles algorithm starting from the region-wise student-

optimal stable matching µRW is an efficient iBF and weakly Pareto dominates µRW .

Proof. Let µRW be the region-wise student-optimal stable matching. Note that individual

rationality and balancedness of µRW follow from conditions (2) and (1) of Definition 4,

respectively. µRW is also fair as we have explained after providing the statement of Defi-

nition 4 (we use condition (4) and our assumption on the priorities). Hence, Corollary 2

implies that the output of a FIG cycles algorithm starting from µRW is an efficient iBF.

Finally, Theorem 1 and the definition of FIG cycles algorithm imply that the output

Pareto dominates µRW . �

6. Discussions

This section provides a number of discussions. Section 6.1 examines the strategy prop-

erties. We show that our mechanism based on the FIG cycle algorithm turns out not

to be strategy-proof. We, however, also show that there is no strategy-proof mechanism

that always outputs an efficient iBF. In Section 6.2, we provide comparative statics to

evaluate the effect of merging and splitting regions. Section 6.3 considers the case with

weak priority, which often arises in school choice applications. In Section 6.4, we review

the related literature.

15We wrote Definition 4 following the most standard way, but some conditions and qualifiers are

redundant because condition (5) holds and, as we explained, µRW is fair. A simplified (equivalent)

definition requires the following three conditions:

(1) For each r ∈ R and each i ∈ r, we have µRW
i ∈ (r ∩ S) ∪ {∅}.

(4’) µRW is fair.

(5’) µRW weakly Pareto dominates all matchings that satisfy conditions (1) and (4’).
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6.1. Strategic Property. A mechanism ϕ is a function from the set of student preference

profiles to the set of matchings. Mechanism ϕ is strategy-proof if

ϕi(�) �i ϕi(�′i,�−i),

for every student preference profile �, i ∈ I, and student preference �′i.

Theorem 3. There exists no strategy-proof mechanism that outputs an efficient iBF for

all preference profiles.

Proof. We prove the result by presenting an example. Let I = {i1, i2, i3} and S =

{s1, s2, s3}. Let there be two regions, r = {s1, i1, i2} and r′ = {s2, s3, i3}. Each school has

the capacity of one. Student preferences and school priorities are given as follows:

�i1 : s2, �s1 : i1, i2, i3,

�i2 : s3, �s2 : i3, i2, i1,

�i3 : s1, �s3 : i3, i1, i2.

In this environment, there are two efficient iBFs:

µ =

(
s1 s2 s3 ∅
i3 i1 ∅, i2

)
, µ′ =

(
s1 s2 s3 ∅
i3 ∅ i2, i1

)
.

Fix a mechanism that outputs an efficient iBF for all preference profiles, ϕ. It must be

either ϕ(�) = µ or ϕ(�) = µ′.

Suppose ϕ(�) = µ. Then, consider �′i2 : s3, s2. The unique efficient iBF at �′:= (�′i2
,�−i2) is µ′, so ϕ(�′) = µ′. Noting that µ′i2 = s3 �i2 ∅ = µi2 , we have obtained that

ϕi2(�) 6�i2 ϕi2(�′i2 ,�−i2), violating strategy-proofness.

Next, suppose ϕ(�) = µ′. Then, by considering �′i1 : s2, s3 and following a symmetric

argument, we conclude that ϕ is not strategy-proof. This completes the proof. �

6.2. Comparative Statics. We say that an environment E = (I, S, (�a)a∈I∪S, (qs)s∈S, R)

is a result of mergers from another environment E ′ = (I ′, S ′, (�′a)a∈I′∪S′ , (q′s)s∈S′ , R′)

if I = I ′, S = S ′, �a=�′a for every a ∈ I ∪ S, qs = q′s for every s ∈ S and, for each

r ∈ R, r is a union of (possibly one) regions of R′. That is, some regions in E ′ merge

to form a region in E , but otherwise all the primitives are unchanged between the two

environments.

Proposition 1. Suppose that E is a result of mergers from E ′. Then, for any matching

µ′ that is an efficient iBF at E ′, there exists a matching µ that is an efficient iBF at E
such that µ weakly Pareto dominates µ′.
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Proof. If µ′ is an efficient iBF at E , then the conclusion of the proposition holds by setting

µ := µ′. Thus, suppose that µ′ is not an efficient iBF at E . Note that µ′ is balanced and

fair at E . Then, run an FIC algorithm in which the initial matching is µ′. Let µ be the

outcome of the FIC algorithm, which is guaranteed to stop in a finite number of steps.

By Theorem 2, µ is an efficient iBF at E . Moreover, by Theorem 1, µ Pareto dominates

µ′, concluding the proof. �

In the following example, merging regions strictly Pareto-improves the outcomes for

students.

Example 7 (An instance in which merging regions makes all students better off). Let

I = {i} and S = {s}. Let there be two regions, r = {i}, and r′ = {s}.16 School s has the

capacity of one. Student i finds school s to be acceptable and school s finds student i to

be acceptable. In this environment, there is a unique efficient iBF:

µ =

(
s ∅
∅ i

)
.

If regions r1 and r2 are merged, then there is a unique efficient iBF:

µ′ =

(
s ∅
i ∅

)
.

Since µ′i � µi and i is the only student in the market, this means that merging the

regions Pareto-improved all the students in this example. The intuition is simple: The

merge reduced the constraint of balanced exchange between regions r and r′, so after the

merger, the student i can go to school s.

The following example shows that a kind of converse of Proposition 1 does not hold.

Example 8 (An instance in which splitting a region inevitably makes some student

better off). Let I = {i1, i2} and S = {s1, s2, s3}. Let there be two regions, r = {s1, s2, i1}
and r′ = {s3, i2}. Each school has the capacity of one. Student preferences and school

priorities are given as follows:

�i1 : s2, s3, �s1 : i2,

�i2 : s1, �s2 : i1,

�s3 : i1.

16In this example, region r does not have a school and region r′ does not have a student. These

features are not necessary to make our point.
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In this environment, there is an efficient iBF:

µ =

(
s1 s2 s3 ∅
∅ i1 ∅ i2

)
.

If region r is split into two regions, r1 = {s1, i1} and r2 = {s2}, then there is a unique

efficient iBF:

µ′ =

(
s1 s2 s3 ∅
i2 ∅ i1 ∅

)
.

Note that i2 is better off as a result of the split. The intuition is the following: Before the

split, i2 in r′ was unable to match with s1 in r as there was no student who wanted to

come from r to his region r′. However, the split made it impossible for i1 in r1 (which was

part of r) to go to s2, and she is now interested in coming to r′. This made it possible to

implement a swap between r1 and r′.

6.3. Weak Priorities. In applications such as daycare allocations and school choice,

schools are sometimes endowed with weak priorities. In fact, Erdil and Ergin (2008)

consider weak priorities and propose an algorithm based on cycles to improve upon the

deferred acceptance algorithm with tie-breaking, albeit in a setting without our balanced-

ness constraints. Accordingly, a natural question would be whether our analysis extends

to cases where priorities are allowed to be weak in the presence of balancedness con-

straints. As it turns out, all of our results go through. In particular, the conclusions of

Theorems 1 and 2 hold without any change.17

The only difference from the case of strict priorities is the following. We stated that, in

the FIG or G(µ, µ′) (a graph which appears in the proof of Theorem 2), each school can

be pointed to by at most one student. This was because a student can point to a school

only if she is the top student among those who regard the school as an improvement.

Under strict priorities, there is a unique “top” student, which was why each school can be

pointed to by at most one student. Under weak priorities, however, there can be multiple

“top” students, so a school can be pointed to by multiple students. But this change does

not affect the proof.

17Under weak priority, we say that a student is acceptable to a school if she is ranked weakly higher than

the outside option, and modify the definitions of individual rationality, efficient iBF and FIG by adopting

this definition of acceptability in the relevant parts of those concepts. The proofs change accordingly in

a straightforward manner.
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6.4. Related Literature. The aim of our study is to improve efficiency in situations

in which matching is organized at a small local level. Sharing this interest with the

present paper, Hafalir, Kojima and Yenmez (2018) study a variety of constraints in the

context of interdistrict school choice, and one of the constraints studied there is the

balancedness constraint. Differently from our analysis, they study conditions under which

the outcome of the standard deferred acceptance algorithm satisfies the constraint, which

turns out to be very restrictive. The present paper offers a way to improve upon matching

mechanisms organized separately in each district even if the deferred acceptance algorithm

does not produce a balanced matching. To our knowledge, the balancedness condition

was introduced and studied first by Dur and Ünver (2019), although the setting of tuition

exchange they study is different from ours or Hafalir, Kojima and Yenmez (2018) in several

important respects, making their analysis and ours logically unrelated.

Our algorithm is based on a number of Pareto-improving cycles among students and

schools. At a high level, this is a common idea and is shared by many other algorithms,

including Gale’s celebrated TTC algorithm in Shapley and Scarf (1974). The difference of

our algorithm from TTC is that we construct cycles in a more subtle and nuanced manner,

taking school priorities into account in particular, so that implementing the cycles will

keep fairness of the original matching. Closer to our algorithm are those due to Erdil

and Ergin (2008, 2017) who, like us, provide iterative algorithms that improve efficiency

while retaining fairness.18 Similarities and differences between those studies and ours are

illustrated in detail in Sections 1.1 and 4 and remark 1.

Lastly, this paper is part of the growing literature on matching theory and market

design. Ever since the seminal contribution by Gale and Shapley (1962), matching theory

proved to be a source of fruitful insights. What is especially remarkable is its use in

applications to market design. Research in this field has been successfully applied to

various problems such as medical match (Roth, 1984; Roth and Peranson, 1999), school

choice (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003), organ donation

(Roth, Sönmez and Ünver, 2004, 2005, 2007), and course allocation (Sönmez and Ünver,

2010; Budish and Cantillon, 2012), among others.

7. Conclusion

This paper studied a school-choice matching model that allows for inter-district trans-

fer of students. Given any matching, we defined a directed bipartite graph (the “FIG”)

18Algorithms based on analogous ideas have been adapted to other settings by Combe, Tercieux and

Terrier (2018) and Erdil and Kumano (2019), among others.
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in which the nodes represent students and schools while the edges are constructed using

student preferences, school priorities, and the information about the current matching.

Using this graph, we characterized the set of efficient iBFs (individually rational, bal-

anced, and fair matchings) by non-existence of a cycle that would improve the welfare of

the students involved in the cycle. This led us to define the FIG cycles algorithm that

computes an efficient iBF in polynomial time. We analyzed various additional issues, such

as comparative statics where regions are merged or split.

Our results provide a concrete solution to the problem of improving the welfare when

matching is organized at small local levels. Such problems are abundant in real markets:

for example, in the City of Tokyo, each of the 23 municipalities independently organizes

a daycare matching market. Our method does not require these 23 municipalities to fully

integrate with one another so that any transfers of students are allowed between different

municipalities, which we view would be an unrealistic solution. We, by contrast, only

require partial integration where transfer can be made to the extent that the balancedness

condition is respected. We view such a compromise to be a realistic solution and hope

our method is used in practice.
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Appendix A. Proofs

A.1. Proof of Theorem 1.

Proof. Fix µ and a FIG cycle F = (i1, s1, i2, s2, . . . , im, sm) on µ. Let µ′ be the matching

that is generated by (µ,F). Clearly, µ′ Pareto dominates µ.

To show that µ′ is fair, notice that µ′i �i µi for all i ∈ I by the definition of FIG

cycle. This implies that, for every i 6∈ {i1, . . . , im}, no one has justified envy to i under

µ′ because µ is fair. Thus, it remains to show that for each k ∈ {1, . . . ,m}, no one has

justified envy to ik under µ′. To see this, note that, again by µ′i �i µi for all i ∈ I,

s �i µ′i implies s �i µi. Since ik = Topsk({j ∈ I|sk �j µj}) for each k by definition and

{j ∈ I|s �j µ′j} ⊂ {j ∈ I|s �j µj} for any s (and thus in particular for sk), we have

i 6�sk ik for every i ∈ {j ∈ I|sk �j µ′j}. Hence, no one has justified envy to ik under µ′.

To show that µ′ is balanced, consider a sequence (r1, . . . , rm) such that sk ∈ rk for each

k. Fix r ∈ R and let K(r) = {k ∈ {1, . . . ,m}|rk = r}. If K(r) = ∅, then (2.1) is satisfied

for r under µ′ because it is satisfied for r under µ. So suppose K(r) 6= ∅. Let

Inr = {k ∈ K(r)|rk−1 6= r} and Outr = {k ∈ K(r)|rk+1 6= r}.

Clearly we must have |Inr| = |Outr|. Define In′r ⊆ Inr and Out′r ⊆ Outr by

In′r = {k ∈ K(r)|rk−1 6= r and ik ∈ r} and Out′r = {k ∈ K(r)|rk+1 6= r and ik+1 ∈ r}.

On the one hand, the inflow to r has changed from µ to µ′ by

(|Inr| − |In′r|)︸ ︷︷ ︸
the number of non-r students

coming to r

− (|Outr| − |Out′r|)︸ ︷︷ ︸
the number of non-r students

going out of r

.

On the other hand, the outflow from r has changed from µ to µ′ by

|Out′r|︸ ︷︷ ︸
the number of r students

going out of r

− |In′r|︸︷︷︸
the number of r students

coming to r

.

Note that these two values are equal because |Inr| = |Outr|. Finally, since (2.1) holds for

r under µ, this implies that (2.1) holds for r under µ′.

To show that individual rationality of µ implies individual rationality of µ′, note first

that µ′i � ∅ for each i ∈ I because µ is individually rational and µ′ Pareto dominates µ.

Moreover, i �s ∅ for every s ∈ S and i ∈ µ′s because (i) i �s ∅ for every i ∈ µ′s ∩ µs by

the assumption that µ is individually rational, while (ii) i �s ∅ for every i ∈ µ′s \ µs by

the definition of FIG (more specifically, item 1 of Definition 3). �
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A.2. Proof of Theorem 2.

Proof. We prove the contraposition, so fix an iBF µ and assume that there exists an iBF

µ′ that Pareto dominates µ.

Lemma 1. For any r ∈ R, |{i ∈ I|µi ∈ r, µ′i 6∈ r}∪{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|
is equal to |{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

Proof. Since µ and µ′ are both balanced, the change (from µ to µ′) of the inflow of students

to r and the change of the outflow are the same as each other. The change of the inflow

is:

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from an outside school to r

+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from being unmatched to r

− |{i ∈ I \ r|µi ∈ r, µ′i 6∈ r}|︸ ︷︷ ︸
the number of non-r students

going out of r

.

The change of the outflow is:

|{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

going out of r

+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was unmatched but is now matched to a non-r school

− |{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for any r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was matched to a non-r school but now is not

.

Thus, we have:

(A.1)

|{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

going out of r

+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was unmatched but is now matched to a non-r school

+ |{i ∈ I \ r|µi ∈ r, µ′i 6∈ r}|︸ ︷︷ ︸
the number of non-r students

going out of r

=

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from an outside school to r

+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|︸ ︷︷ ︸
the number of non-r students

coming from being unmatched to r

+ |{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for any r′ 6= r}|︸ ︷︷ ︸
the number of r students

who was matched to a non-r school but now is not

.

Now, recall that µ is individually rational. Hence, µ′i �i µi �i ∅ for every i, and thus we

have that µi ∈ r implies µ′i 6= ∅. Therefore,

{i ∈ r|µi ∈ r, µ′i ∈ r′ for some r′ 6= r}| = |{i ∈ r|µi ∈ r, µ′i 6∈ r}

Also, for the same reason, we have

{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i 6∈ r′ for any r′ 6= r} = {i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}.
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Hence, (A.1) is equivalent to

|{i ∈ r|µi ∈ r, µ′i 6∈ r}|+|{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}|+|{i ∈ I\r|µi ∈ r, µ′i 6∈ r}| =

|{i ∈ I \ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|

+|{i ∈ r|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|,

or

|{i ∈ I|µi ∈ r, µ′i 6∈ r}|+ |{i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}| =

|{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r}|+ |{i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

Since the two terms in each side of the above equation are disjoint from each other, we

have

|{i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈ r′ for some r′ 6= r}| =

|{i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}|.

This completes the proof. �

Consider the following graph, in which the only agents associated with arrows are the

schools in r and students who are matched to a school in r under µ and students living in

r who are unmatched under µ. First, each s ∈ r points to each student i ∈ µs \µ′s. Then,

for each student who was pointed to by some school in r and each student living in r who

are unmatched under µ, let her point to the school µ′i if µ′i ∈ r. Moreover, by Lemma 1,

there is a one-to-one and onto mapping from {i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈
r′ for some r′ 6= r} to {i ∈ I|µi ∈ r′ for some r′ 6= r, µ′i ∈ r} ∪ {i ∈ I \ r|µi = ∅, µ′i ∈ r}.
Take one such mapping φ. Then, for each i ∈ {i ∈ I|µi ∈ r, µ′i 6∈ r} ∪ {i ∈ r|µi = ∅, µ′i ∈
r′ for some r′ 6= r}, let i point to µ′φ(i). This defines a directed graph, denoted G(µ, µ′, r),

in which only schools in r, students matched to a school in r under µ, and the students

of r who are unmatched under µ may be associated with arrows.

Let I ′ := {i ∈ I|µ′i �i µi}. By the assumption that µ′ Pareto dominates µ, we have

I ′ 6= ∅. For any matching µ̃, let S(µ̃) := {s ∈ S|s = µ̃i for some i ∈ I ′}.

Lemma 2. Suppose s ∈ S(µ) \ S(µ′). Then there exists a school s′ ∈ r(s) ∩ S(µ′) such

that |µs′| < qs′.

Proof. Take an arbitrary s such that s ∈ S(µ) \ S(µ′) (If there is no such school, we are

done). Starting from this school, follow the arrows in G(µ, µ′, r(s)) in an arbitrary manner

without passing the same student twice (note that there is an outgoing arrow from s).

Since there are a finite number of students, there is s′ such that there is no more outgoing

arrow from s′ to a student who has not appeared in the path (note that, by definition,
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this path cannot end at any student). This implies that the number of students who are

in µ′s′ \µs′ is larger than the number of students who are in µs′ \µ′s′ by at least one. Hence,

we have qs′ ≥ |µ′s′| > |µs′|. Since s′ ∈ r(s) and s′ ∈ S(µ′) by the definition of the graph,

this completes the proof. �

Lemma 3. Suppose µi = ∅ and i ∈ I ′. Then there exists a school s′ ∈ r(i) ∩ S(µ′) such

that |µs′ | < qs′.

Proof. Suppose there is i such that µi = ∅ and i ∈ I ′. Starting from this student i, follow

the arrows in G(µ, µ′, r) in an arbitrary manner without passing the same student twice

(note that there is an outgoing arrow from i). Since there are a finite number of students,

there is s′ such that there is no more outgoing arrow from s′ to a student who has not

appeared in the path (note that, by definition, this path cannot end at any student).

This implies that the number of students who are in µ′s′ \ µs′ is larger than the number

of students who are in µs′ \ µ′s′ by at least one. Hence, we have qs′ ≥ |µ′s′| > |µs′ |. Since

s′ ∈ r(i) and s′ ∈ S(µ′) by the definition of the graph G(µ, µ′, r(i)), this completes the

proof. �

Next, we define a graph, denoted G(µ, µ′), as follows. In this graph, only students

in I ′ and schools in S(µ′) may be associated with arrows. Formally, for any s ∈ S(µ′),

consider the set of students in I ′ who strictly prefer s to their match at µ, i.e., Dµ
s (I ′) :=

{i ∈ I ′|s �i µi}, and let Tops(D
µ
s (I ′)) point to s. Note that Dµ

s (I ′) is nonempty by the

definitions of I ′, µ and µ′, and thus for any s ∈ S(µ′), there exists some i ∈ I ′ who points

to s. Next, consider any i ∈ I ′.

(1) If µi ∈ S(µ′), then let µi point to i.

(2) If µi ∈ S \ S(µ′), then µi ∈ S(µ) \ S(µ′) by the definition of S(µ) and hence by

Lemma 2, there exists a school s′ ∈ r(µi) ∩ S(µ′) such that |µs′ | < qs′ . Let any

such school s′ point to i.

(3) If µi = ∅, then by Lemma 3, there exists s ∈ r(i) ∩ S(µ′) such that |µs| < qs. Let

any such school s point to i.

The graph must have a cycle because each school is pointed to by a single student, and

each student is pointed to by at least one school.19 Pick an arbitrary cycle and call it F∗.

Lemma 4. F∗ is a FIG cycle.

19To find a cycle, take an arbitrary school and find the student pointing to that school. Then find the

school pointing to that student. Then find the student pointing to that school, etc., until we find a school

or a student that has already been visited. Since there are only finitely many students, this procedure

ends in finite steps.
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Proof. Let F∗ = (i1, s1, . . . , im, sm).

It is straightforward to check that the last two conditions of a cycle are satisfied: By

construction, each student appears only once in F∗. Given this, since the pointing rule

for G(µ, µ′) implies that each school is pointed to only by a single student, each school

appears at most once in F∗.
To complete the proof, it suffices to show that G(µ, µ′) is a subset of the FIG on µ. To

show this, first we establish that, for any k ∈ {1, . . . ,m}, ik points to sk according to the

definition of pointing used for FIG. To do so, it suffices to show that ik = Topsk(Dµ
sk

)

and ik �sk ∅ (Case 1 of Definition 3). The latter holds for the following reason: we have

i ∈ Dµ
sk

(I ′) for some i ∈ µ′sk because of the definitions of S(µ′) and I ′ and the fact that

sk ∈ S(µ′). Hence, by individual rationality of µ′, it follows that ik = Topsk(Dµ
sk

(I ′)) �sk
i �sk ∅. To show the former, note first that, by construction, ik = Topsk(Dµ

sk
(I ′)) and

hence ik �sk i for any i ∈ (Dµ
s ∩ I ′) \ {ik}. Next, consider any i ∈ Dµ

sk
\ I ′. Because

µ′i′ = µi′ for any i′ ∈ I \ I ′ by the definition of I ′, it follows that i ∈ Dµ′
sk

. This and the

assumption that µ′ is fair imply j �sk i for every j ∈ µ′sk . By the construction of the

cycle, ik �sk j for every j ∈ µ′sk \ µsk 6= ∅ (the nonemptiness holds because sk ∈ S(µ′)).

Thus, we have ik �sk i. Therefore, we have ik �sk i for any i ∈ Dµ
s \ {ik}, which implies

ik = Topsk(Dµ
sk

).

Second, we consider three cases of the definition of G(µ, µ′) to show that, for any

k ∈ {1, . . . ,m}, sk points to ik+1 according to the definition of pointing used for FIG

(with m + 1 = 1). Suppose first that ik+1 and sk satisfy the condition described in Case

1 of the definition of G(µ, µ′). This implies that ik+1 and sk satisfy the assumption in

Case 2a of Definition 3. Next, consider Case 2 of the definition of G(µ, µ′). In this case,

|µsk | < qsk and µik+1
∈ r(sk) hold, which satisfies the condition in Case 2b of Definition 3.

Finally, consider Case 3 of the definition of G(µ, µ′). In this case, |µsk | < qsk , ik+1 ∈ r(sk),
and µik+1

= ∅ hold, which again satisfies the condition in to Case 2b of Definition 3. This

completes the proof. �

Lemma 4 completes the proof. �
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